Skip to main content

Characterization of pressure-driven water flows in nanofluidic channels by mass flowmetry

Abstract

With developments in analytical devices promoted by nanofluidics, estimation of the flow rate in a nanochannel has become important to calculate volumes of samples and reagents in chemical processing. However, measurement of the flow rate in nanospaces remains challenging. In the present study, a mass flowmetry system was developed, and the flow rate of water by pressure-driven flow in a fused-silica nanochannel was successfully measured in picoliters per second. We revealed that the water flow rate is dependent on the viscosity significantly increased in a square nanochannel with 102 nm width and depth (3.6 times higher than the bulk viscosity for a representative channel size of 190 nm) and slightly increased in a plate nanochannel with micrometer-scale width and 102 nm depth (1.3 times higher for that of 234 nm), because of dominant surface effects. The developed method and results obtained will greatly contribute to nanofluidics and other related fields.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. X. Ou, P. Chen, B.-F. Liu, Anal. Sci. 35, 609 (2016)

    Article  Google Scholar 

  2. L.F. Giraldo, B.L. López, L. Pérez, S. Urrego, L. Sierra, M. Mesa, Macromol. Symp. 258, 129 (2007)

    CAS  Article  Google Scholar 

  3. H. Shimizu, K. Toyoda, K. Mawatari, S. Terabe, T. Kitamori, Anal. Chem. 91, 3009 (2019)

    CAS  Article  Google Scholar 

  4. N. Varongchayakul, J. Song, A. Meller, M.W. Grinstaff, Chem. Soc. Rev. 47, 8512 (2018)

    CAS  Article  Google Scholar 

  5. B.R. Cipriany, P.J. Murphy, J.A. Hagarman, A. Cerf, D. Latulippe, S.L. Levy, J.J. Benítez, C.P. Tan, J. Topolancik, P.D. Soloway, H.G. Craighead, Proc. Natl. Acad. Sci. USA 109, 8477 (2012)

    CAS  Article  Google Scholar 

  6. T. Nakao, Y. Kazoe, E. Mori, K. Morikawa, T. Fukasawa, A. Yoshizaki, T. Kitamori, Analyst 144, 7200 (2019)

    CAS  Article  Google Scholar 

  7. G.K. Lockwood, S.H. Garofalini, J. Phys. Chem. C 118, 29750 (2014)

    CAS  Article  Google Scholar 

  8. R. Zhou, C. Sun, B. Bai, J. Chem. Phys. 154, 074709 (2021)

    CAS  Article  Google Scholar 

  9. A. Hibara, T. Saito, H.B. Kim, M. Tokeshi, T. Ooi, M. Nakao, T. Kitamori, Anal. Chem. 74, 6170 (2002)

    CAS  Article  Google Scholar 

  10. L. Li, Y. Kazoe, K. Mawatari, Y. Sugii, T. Kitamori, J. Phys. Chem. Lett. 3, 2447 (2012)

    CAS  Article  Google Scholar 

  11. K. Morikawa, Y. Kazoe, K. Mawatari, T. Tsukahara, T. Kitamori, Anal. Chem. 87, 1475 (2015)

    CAS  Article  Google Scholar 

  12. H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Kitamori, Angew. Chem. Int. Ed. 51, 3573 (2012)

    CAS  Article  Google Scholar 

  13. T. Tsukahara, A. Hibara, Y. Ikeda, T. Kitamori, Angew. Chem. Int. Ed. 46, 1180 (2007)

    CAS  Article  Google Scholar 

  14. N.R. Tas, J. Haneveld, H.V. Jansen, M. Elwenspoek, A. van den Berg, Appl. Phys. Lett. 85, 3274 (2004)

    CAS  Article  Google Scholar 

  15. S. Liu, Q. Pu, L. Gao, C. Korzeniewski, C. Matzke, Nano Lett. 5, 1389 (2005)

    CAS  Article  Google Scholar 

  16. K. Morikawa, K. Mawatari, M. Kato, T. Tsukahara, T. Kitamori, Lab. Chip 10, 871 (2010)

    CAS  Article  Google Scholar 

  17. M. Whitby, L. Cagnon, M. Thanou, N. Quirke, Nano Lett. 8, 2632 (2008)

    CAS  Article  Google Scholar 

  18. R. Ishibashi, K. Mawatari, K. Takahashi, T. Kitamori, J. Chromatogr. A 1228, 51 (2012)

    CAS  Article  Google Scholar 

  19. J.P. Brody, P. Yager, R.E. Goldstein, R.H. Austin, Biophys. J. 71, 3430 (1996)

    CAS  Article  Google Scholar 

  20. J. Kestin, M. Sokolov, W.A. Wakeham, J. Phys. Chem. Ref. Data 7, 941 (1978)

    CAS  Article  Google Scholar 

  21. M. Wang, C.-C. Chang, R.-Y. Yang, J. Chem. Phys. 132, 024701 (2010)

    Article  Google Scholar 

  22. S.I. Kim, S.J. Kim, Microfluid. Nanofluid. 22, 12 (2018)

    Article  Google Scholar 

  23. Y. Kazoe, K. Mawatari, Y. Sugii, T. Kitamori, Anal. Chem. 83, 8152 (2011)

    CAS  Article  Google Scholar 

  24. R.F. Probstein, Physicochemical Hydrodynamics (Wiley, New York, 1994)

    Book  Google Scholar 

  25. Q. Xie, F. Xin, H.G. Park, C. Duan, Nanoscale 8, 19527 (2016)

    CAS  Article  Google Scholar 

  26. Q. Xie, M.A. Alibakhshi, S. Jiao, Z. Xu, M. Hempel, J. Kong, H.G. Park, C. Duan, Nat. Nanotech. 13, 238 (2018)

    CAS  Article  Google Scholar 

  27. Y. Kazoe, K. Mawatari, L. Li, H. Emon, N. Miyawaki, H. Chinen, K. Morikawa, A. Yoshizaki, P.S. Dittrich, T. Kitamori, J. Phys. Chem. Lett. 11, 5776 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Kakenhi Grant-in-Aid (No. JP21000007) from the Japan Society for the Promotion of Science (JSPS). Fabrication facilities were provided in part by the Academic Consortium for Nano and Micro Fabrication from four universities (The University of Tokyo, Tokyo Institute of Technology, Keio University and Waseda University, Japan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yutaka Kazoe or Takehiko Kitamori.

Additional information

Advanced Publication Released Online by JSTAGE July 30, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazoe, Y., Kubori, S., Morikawa, K. et al. Characterization of pressure-driven water flows in nanofluidic channels by mass flowmetry. ANAL. SCI. 38, 281–287 (2022). https://doi.org/10.2116/analsci.21P198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P198

Keywords

  • Nanofluidics
  • Nanochannel
  • Flow rate
  • Water
  • Pressure-driven flow