Skip to main content
Log in

Sequential injection spectrophotometric method for screening bromate produced as an ozonation water disinfection by-product

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The aim of this work was the development of an automatic sequential injection analysis method to monitor the ozonation process for water disinfection. The determination was based on the reaction between bromate and o-dianisidine in the presence of bromide in acidic medium. The determination parameters were studied and adjusted to enable bromate quantification in the range 0.35–4.0 mg BrO3/L with a limit of detection of 20 μg BrO3/L. The choice of a sequential injection procedure enabled a minimal consumption of reagents and no need for sample pre-treatment. The developed sequential injection proved to be accurate with < 5% relative deviation when compared to ICP-MS and an average of 101% in recovery percentages studies. It was effectively applied to monitor an ozonation process enabling the follow-up of the process with real-time quantification of the bromate content.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization, WHO Chron. 2008, 688 (2008)

    Google Scholar 

  2. Y. Kurokawa, A. Maekawa, M. Takahashi, Y. Hayashi, Environ. Health Perspect. 87, 309 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Xi, F. Zhang, Y. Lu, H.-Y. Hu, Sep. Purif. Technol. 179, 45 (2017)

    Article  CAS  Google Scholar 

  4. M. Tammaro, V. Fiandra, A. Salluzzo, A. Patti, A. Lancia, J. Environ. Chem. Eng. 4, 3293 (2016)

    Article  CAS  Google Scholar 

  5. I.H. Aljundi, Desalination 277, 24 (2011)

    Article  CAS  Google Scholar 

  6. M. Achilli, L. Romele, J. Chromatogr. A 847, 271 (1999)

    Article  CAS  Google Scholar 

  7. J. Gao, W. Yang, J. Kang, J. Hou, H. Bian, J. Chromatogr. A 789, 195 (1997)

    Article  CAS  Google Scholar 

  8. K. Himata, M. Noda, S. Ando, Y. Yamada, Food Addit. Contam. 14, 809 (1997)

    Article  CAS  Google Scholar 

  9. J.C.G. Esteves da Silva, J.R.M. Dias, J.M.C.S. Magalhães, Anal. Chim. Acta 450, 175 (2001)

    Article  CAS  Google Scholar 

  10. I.V. Tóth, I.C. Santos, C.F.M. Azevedo, J.F.S. Fernandes, A.O.S.S. Rangel, R.N.M.J. Páscoa, R.B.R. Mesquita, Anal. Sci. 29, 563 (2013)

    Article  Google Scholar 

  11. S. Farrell, J.F. Joa, G.E. Pacey, Anal. Chim. Acta 313, 121 (1995)

    Article  CAS  Google Scholar 

  12. M.J. Almendral-Parra, A. Alonso-Mateos, M.S. Fuentes-Prieto, J. Fluoresc. 18, 1169 (2008)

    Article  CAS  Google Scholar 

  13. S.M. Oliveira, M.A. Segundo, A.O.S.S. Rangel, J.L.F.C. Lima, V. Cerdà, Anal. Lett. 44, 284 (2011)

    Article  CAS  Google Scholar 

  14. L. Romele, M. Achilli, Analyst 123, 291 (1998)

    Article  CAS  Google Scholar 

  15. R.B.R. Mesquita, A.O.S.S. Rangel, Anal. Chim. Acta 648, 7 (2009)

    Article  CAS  Google Scholar 

  16. M.A. Segundo, A.O.S.S. Rangel, J. Flow Inject. Anal. 19, 3 (2002)

    CAS  Google Scholar 

  17. A. Economou, P.D. Tzanavaras, D.G. Themelis, J. Chem. Educ. 2005, 82 (1820)

    Google Scholar 

  18. N.W. Barnett, C.E. Lenehan, S.W. Lewis, TrAC Trends Anal. Chem. 18, 346 (1999)

    Article  CAS  Google Scholar 

  19. A. Alonso-Mateos, M.J. Almendral-Parra, M.S. Fuentes-Prieto, Talanta 76, 892 (2008)

    Article  CAS  Google Scholar 

  20. M.J. Almendral, A. Alonso, M.S. Fuentes, J. Environ. Monit. 11, 1381 (2009)

    Article  CAS  Google Scholar 

  21. International Union of Pure and Applied Chemistry, Pure Appl. Chem. 45, 99 (1976)

    Article  Google Scholar 

  22. L.A. Currie, Int. Union Pure Appl. Chem. 67, 1699 (1995)

    Article  CAS  Google Scholar 

  23. D.T. Burns, K. Danzer, A. Townshend, Pure Appl. Chem. 74, 2201 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by FEDER through project reference POCI-01-0145-FEDER-031522 (Programa Operacional Competitividade e Internacionalização) and by National Funds from FCT (Fundação para a Ciência e Tecnologia); scientific collaboration from FCT project UID/Multi/50016/2020 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel B. R. Mesquita.

Additional information

Advanced Publication Released Online by J-STAGE December 17, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

44211_2021_31_MOESM1_ESM.docx

In the supporting information are shown the results of the reaction kinetics studies, both the studies made in a batch-wise procedure and the calibration curves established for different reaction time (in batch-wise and flow procedure) (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesquita, R.B.R., Ferreira, F.T.S.M., Cerqueira, A. et al. Sequential injection spectrophotometric method for screening bromate produced as an ozonation water disinfection by-product. ANAL. SCI. 38, 137–143 (2022). https://doi.org/10.2116/analsci.21P191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P191

Keywords

Navigation