Skip to main content
Log in

Silica Gel Modified with N-(3-Propyl)-O-phenylenediamine: Functionalization, Metal Sorption Equilibrium Studies and Application to Metal Enrichment Prior to Determination by Flame Atomic Absorption Spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The use of the chemically modified silica gel N-(3-propyl)-O-phenylenediamine (SiG-NPPDA) adsorbent, for the preconcentration and separation of trace heavy metals, was described. SiG-NPPDA sorbs quantitatively (90 – 100% recovery) trace amounts of nine heavy metals, viz., Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) at pH 7 – 8. The sorption capacity varies from 350 to 450 μmol g−1. Desorption was found to be quantitative with 1 – 2 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, CM,eqm% (Recovery, R%), were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, log Kd, ranges between 4.0 and 6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS). The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance), potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the SiG-NPPDA adsorbent and the investigated metal ions is proposed to be due to the reaction of the investigated metal ions with the two nitrogen atoms of the SiG-NPPDA adsorbent. The present adsorbent coupled with flame AAS has been used to enrich and determine the nine metal ions in natural aqueous systems and in certified reference materials (RSD ≤ 5%). The copper, iron, manganese and zinc present in some pharmaceutical vitamin samples were also preconcentrated on SiG-NPPDA adsorbent and determined by flame AAS (RSD ≤ 4.2%). Nanogram concentrations (0.07 – 0.14 ng ml−1) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. C. Ferreira, W. N. L. Santos, and V. A. Lemos, Anal. Chim. Acta, 2001, 445, 145.

    Article  CAS  Google Scholar 

  2. V. A. Lemos and S. L. C. Ferreira, Anal. Chim. Acta, 2001, 441, 281.

    Article  CAS  Google Scholar 

  3. S. Hirata, H. Yoshihara, and M. Aihara, Talanta, 1999, 49, 1059.

    Article  CAS  Google Scholar 

  4. P. K. Tewari and A. K. Singh, Talanta, 2001, 53, 823.

    Article  CAS  Google Scholar 

  5. A. X. S. Qian, G. H. F. He, and X. Han, Analyst, 2001, 126, 239.

    Article  CAS  Google Scholar 

  6. R. J. Cessela, D. T. Bitencourt, A. G. Branco, S. L. C. Ferreira, D. S. Jesus, M. S. Cavalho, and R. E. Santelli, JAAS, 1999, 14, 1749.

    Google Scholar 

  7. M. A. Akl, Anal. Sci., 2001, 17, 561.

    Article  CAS  Google Scholar 

  8. R. W. Frei (ed.) and O. Hutzinger, “Analytical Aspects of Mercury and Other Heavy Metals in the Environment”, 1975, Gordon and Breaach Science Publishers, London.

  9. P. A. Krenkel (ed.), “Heavy Metals in the Aquatic Environment”, 1975, Pergamon Press, Oxford.

    Google Scholar 

  10. M. A. Marshall and H. A. Mottola, Anal. Chem., 1985, 57, 72.

    Google Scholar 

  11. D. E. Leyden and G. H. Luttrell, Anal. Chem., 1975, 47, 1613.

    Google Scholar 

  12. C. Bresson, M. J. Menu, M. Dartiquenave, and Y. Dartiguenave, J. Chem. Res., 1998, 5, 490.

    Article  Google Scholar 

  13. I. K. Ralph, “The Chemistry of Silica”, 1979, Chap. 6, Wiley-Interscience, New York, 622–642.

    Google Scholar 

  14. U. Koklu, Chim. Acta Turcica, 1984, 12, 265.

    CAS  Google Scholar 

  15. M. A. A. Akl, I. M. M. Kenawy, and R. R. Lasheen, Michrochem. J., 2004, 78, 143.

    Article  CAS  Google Scholar 

  16. D. Beauchemin, J. W. McLaren, A. P. Mykytiuk, and S. S. Berman, Anal. Chem., 1987, 59, 778.

    Article  CAS  Google Scholar 

  17. V. V. Skopenko, A. K. Trofimchuk, and E. S. Janovskaya, Ukr. Khim. Zh., 1993, 50, 549.

    Google Scholar 

  18. D. Chambaz and W. Haerdi, J. Chromatogr., 1992, 600, 203.

    Article  CAS  Google Scholar 

  19. O. Todorova, P. Vassileua, and L. Lakov, Fresenius J. Anal. Chem., 1993, 346, 943.

    Article  CAS  Google Scholar 

  20. E. A. Allen, M. C. Boadman, and B. A. Plunkett, Anal. Chim. Acta, 1987, 196, 323.

    Article  CAS  Google Scholar 

  21. A. Goswami and A. K. Singh, Talanta, 2002, 58, 669.

    Article  CAS  Google Scholar 

  22. Kh. S. Abou El Shirbini, I. M. M. Kenawy, M. A. Hamed, R. M. Issa, and R. El-Morsi, Talanta, 2002, 58, 289.

    Article  Google Scholar 

  23. G. A. E. Mostafa, M. M. Hassaneen, K. S. Abu El Shirbini, and V. Gorlitz, Anal. Sci., 2003, 19, 1151.

    Article  CAS  Google Scholar 

  24. G. Venkatesh, A. K. Singh, and B. Venkataraman, Mikrochim. Acta, 2004, 144, 233.

    Article  CAS  Google Scholar 

  25. M. E. Mahmoud, Anal. Lett., 1996, 29, 1791.

    Article  CAS  Google Scholar 

  26. M. A. Hafez, I. M. M. Kenawy, M. A. Akl, and R. R. Lashien, Talanta, 2001, 53, 749.

    Article  CAS  Google Scholar 

  27. J. Strickl and T. Parsons, “A Practical Handbook of Sea Water Analysis”, 1968, Fish Res. Bd. Card. Bull., 311.

    Google Scholar 

  28. M. E. Mahmoud, E. M. Soliman, and A. El-Dissouky, Anal. Sci., 1997, 13, 765.

    Article  CAS  Google Scholar 

  29. I. M. M. Kenawy, M. A. H. Hafez, M. A. Akl, and R. Lashien, Anal. Sci., 2000, 16, 493.

    Article  CAS  Google Scholar 

  30. F. W. Fifield and P. J. Haines, “Environmental Analytical Chemistry”, 2nd ed., 2000, Black Well Science Ltd., Cambridge, 363.

    Google Scholar 

  31. A. Albert and E. P. Sergeant, “The Determination of Ionization Cosntants”, 1962, Chapman and Hall Ltd., London, 95.

    Google Scholar 

  32. L. J. Bellamy, “The infra-red spectra of complex molecules”, 2nd ed., 1964, John Wiley and Sons Inc., London, 165, 282.

    Google Scholar 

  33. K. Nakamoto, “Infrared Spectra of Inorganic and Coordination Compounds”, 2nd ed., 1970, Wiley Interscience, 155, 217, 245.

    Google Scholar 

  34. J. Emsley, “The elements”, 1st ed., 1989, Oxford.

    Google Scholar 

  35. J. C. Miller and J. N. Miller, “Statistics for Analytical Chemistry”, 1st ed., 1986, Ellis Horwood Ltd., England, 43, 53, 59, 189, 192.

    Google Scholar 

  36. M. Miro, J. M. Estela, and V. Cerda, Talanta, 2004, 62, 1.

    Article  CAS  Google Scholar 

  37. APHA, “Standard Methods for the Examination of Water and Seawater”, 17th ed., 1989, EPHA, Washington, 1193.

    Google Scholar 

  38. P. K. Tewari and A. K. Singh, Talanta, 2001, 53, 823.

    Article  CAS  Google Scholar 

  39. M. Kumar, D. P. S. Rathore, and A. K. Singh, Talanta, 2000, 51, 1187.

    Article  CAS  Google Scholar 

  40. M. C. Gennarro, C. Baiocchi, E. Campi, E. Mentasi, and R. Aruga, Anal. Chim. Acta, 1983, 151, 339.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akl, M.A.AE., Kenawy, I.M. & Lasheen, R.R. Silica Gel Modified with N-(3-Propyl)-O-phenylenediamine: Functionalization, Metal Sorption Equilibrium Studies and Application to Metal Enrichment Prior to Determination by Flame Atomic Absorption Spectrometry. ANAL. SCI. 21, 923–931 (2005). https://doi.org/10.2116/analsci.21.923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21.923

Navigation