Skip to main content

Advertisement

Log in

The Role of Trace Metallic Elements in Neurodegenerative Disorders: Quantitative Analysis Using XRF and XANES Spectroscopy

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The present paper focuses on the analysis of trace metallic elements and their role in neurodegenerative disorders. The use of synchrotron radiation microbeams allows investigation of pathological tissues from Alzheimer’s disease, Parkinson’s disease and Amyotrophic lateral sclerosis cases in a nondestructive manner and at cellular level. By employing X-ray absorption near edge structure (XANES) technique, the chemical state of the investigated elements can be determined, while energy-selective X-ray fluorescence spectroscopy provides the spatial distribution of each element in each oxidative state selectively. The investigated tissues (derived from human, monkey and mouse specimens) show distinct imbalances of metallic elements such as Zn and Cu as well as Fe2+/Fe3+ redox pair, which point to oxidative stress as a crucial factor in the development or progress of these neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Papanikolau and K. Pantopoulos, Toxicol. Appl. Pharmacol., 2005, 202, 199.

    Article  Google Scholar 

  2. A. D. Cash, M. A. Smith, and G. Perry, Med. Chem. Rev., 2004, 1, 19.

    CAS  Google Scholar 

  3. A. I. Bush, Curr. Opin. Chem. Biol., 2000, 4, 184.

    Article  CAS  Google Scholar 

  4. A. Alves-Rodrigues, L. Gregori, and M. E. Figueiredo-Pereira, Tre. Neurosci., 1998, 21, 516.

    Article  CAS  Google Scholar 

  5. L. Goodman, J. Nerv. Ment. Dis., 1953, 117(2), 97.

    Article  Google Scholar 

  6. W. D. Ehman, W. R. Markesbery, M. Alauddin, T. I. M. Hossain, and E. H. Brubaker, Neurotoxicology, 1986, 7, 197.

    Google Scholar 

  7. W. R. Markesbery, Free Radical Bio. Med., 1997, 23, 134.

    Article  CAS  Google Scholar 

  8. S. Yoshida, A. Ide-Ektessabi, and S. Fujisawa, Struct. Chem., 2003, 14, 85.

    Article  CAS  Google Scholar 

  9. C. S. Atwood, R. D. Moir, X. Huang, R. C. Scarpa, M. E. Bacarra, D. M. Romano, M. A. Hartshorn, R. E. Tanzi, and A. I. Bush, J. Biol. Chem., 1998, 273, 12817.

    Article  CAS  Google Scholar 

  10. X. Huang, C. S. Atwood, M. A. Hartshorn, G. Multhaup, L. E. Goldstein, R. C. Scarpa, M. P. Cuajungco, D. N. Gray, J. Lim, R. D. Moir, R. E. Tanzi, and A. I. Bush, Biochemistry, 1999, 38, 7609.

    Article  CAS  Google Scholar 

  11. D. W. Choi, M. Yokoyama, and J. Koh, Neuroscience, 1988, 24, 67.

    Article  CAS  Google Scholar 

  12. C. C. Curtain, F. Ali, I. Volitakis, R. A. Cherny, R. S. Norton, K. Beyreuther, C. J. Barrow, C. L. Masters, A. I. Bush, and K. J. Barnham, J. Biol. Chem., 2001, 276, 20466.

    Article  CAS  Google Scholar 

  13. J. B. Schulz, J. Lindenau, J. Seyfried, and J. Dichgans, J. Biochem., 2000, 267, 4904.

    CAS  Google Scholar 

  14. D. T. Dexter, F. R. Wells, A. J. Lees, F. Agid, Y. Agid, P. Jenner, and C. D. Marsden, J. Neurochem., 1989, 52, 1830.

    Article  CAS  Google Scholar 

  15. Y. Mizuno, H. Yoshino, S. Ikebe, N. Hattori, T. Kobayashi, S. Shimoda-Matsubayashi, H. Matsumine, and T. Kondo, Ann. Neurol., 1998, 44, S99.

    Article  Google Scholar 

  16. P. Jenner, Mov. Disord., 1998, 13, S24.

    PubMed  Google Scholar 

  17. M. H. Polymeropoulos, C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia, A. Dutra, B. Pike, H. Root, J. Rubenstein, R. Boyer, E. S. Stenroos, S. Chandrasekharappa, A. Athanassiadou, T. Papapetropoulos, W. G. Johnson, A. M. Lazzarini, R. C. Duvoisin, G. Di Lorio, L. I. Golbe, and R. L. Nussbaum, Science, 1997, 276, 2045.

    Article  CAS  Google Scholar 

  18. D. T. Dexter, A. Carayon, F. Javoy-Agid, Y. Agid, F. R. Wells, S. E. Daniel, A. J. Lees, P. Jenner, and C. D. Marsden, Brain, 1991, 114, 1953.

    Article  Google Scholar 

  19. E. Kienzl, K. Jellinger, H. Stachelberger, and W. Linert, Life Sci., 1999, 65, 1973.

    Article  CAS  Google Scholar 

  20. A. Ektessabi, S. Fujisawa, and S. Yoshida, J. Appl. Phys., 2002, 91, 1613.

    Article  Google Scholar 

  21. M. Gerlach, D. Ben-Shachar, P. Riederer, and M. B. H. Youdim, J. Neurochem., 1994, 63, 793.

    Article  CAS  Google Scholar 

  22. M. Q. Ren, J. P. Xie, X. S. Wang, W. Y. Ong, S. K. Leong, and F. Watt, Nucl. Instr. Method, B, 2001, 181, 522.

    Article  CAS  Google Scholar 

  23. R. J. Smeyne and V. Jackson-Lewis, Mol. Brain Res., 2005, 134, 57.

    Article  CAS  Google Scholar 

  24. L. Zecca, T. Shima, A. Stroppolo, C. Goj, G. A. Battiston, R. Gerbasi, T. Sarna, and H. M. Swartz, Neuroscience, 1996, 73, 407.

    Article  CAS  Google Scholar 

  25. Y. He, P. S. Thong, T. Lee, S. K. Leong, B. Y. Mao, F. Dong, and F. Watt, Free Radical Bio. Med., 2003, 35, 540.

    Article  CAS  Google Scholar 

  26. S. Yoshida, A. Ide-Ektessabi, and S. Fujisawa, J. Synchrotron Rad., 2001, 8, 998.

    Article  CAS  Google Scholar 

  27. H. J. H. Fenton, J. Chem. Soc. Proc., 1894, 10, 157.

    Google Scholar 

  28. K. Cui, X. Luo, K. Xu, and M. R. Ven Murthy, Prog. Neuro-Psycho. Biol. Psychiat., 2004, 28, 771.

    Article  CAS  Google Scholar 

  29. K. J. Barnham, C. L. Masters, and A. I. Bush, Nature, 2004, 3, 205.

    Article  CAS  Google Scholar 

  30. M. T. Carri, A. Ferri, M. Cozzolino, L. Calabrese, and G. Rotilio, Brain Res. Bull., 2003, 61, 365.

    Article  CAS  Google Scholar 

  31. J. L. Elliott, Prog. Neuro-Psychopharmacol. Biol. Psychiat., 2001, 25, 1169.

    Article  CAS  Google Scholar 

  32. D. R. Rosen, T. Siddique, D. Patterson, D. A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J. P. O’Regan, H. Deng, Z. Rahmani, A. Krizus, D. McKenna-Yasek, A. Cayabyab, S. M. Gaston, R. Berger, R. E. Tanzi, J. J. Halperin, B. Herzfeldt, R. Van den Bergh, W. Hung, T. Bird, G. Deng, D. W. Mulder, C. Smyth, N. G. Laing, E. Soriano, M. A. Pericak-Vance, J. Haines, G. A. Rouleau, J. S. Gusella, H. R. Horvitz, and R. H. Brown, Nature, 1993, 362, 59.

    Article  CAS  Google Scholar 

  33. J. S. Beckman, A. G. Estevez, J. P. Crow, and L. Barbeito, TINS, 2001, 24, S15.

    Google Scholar 

  34. W. Robberecht, J. Neurol., 2000, 247, I1.

    Article  Google Scholar 

  35. A. G. Butt, J. M. Bowler, and C. W. McLaughlin, J. Membr. Biol., 1998, 162, 17.

    Article  CAS  Google Scholar 

  36. M. E. Gurney, H. Pu, A. Y. Chiu, M. C. Dal Canto, C. Y. Polchow, D. D. Alexander, J. Caliendo, A. Hentati, Y. W. Kwon, H. X. Deng, W. Chen, P. Zhai, R. L. Sufit, and T. Siddique, Science, 1994, 264, 1772.

    Article  CAS  Google Scholar 

  37. P. C. Wong, C. A. Pardo, D. R. Borchelt, M. K. Lee, N. G. Copeland, N. A. Jenkins, S. S. Sisodia, D. W. Cleveland, and D. L. Price, Neuron, 1995, 14, 1105.

    Article  CAS  Google Scholar 

  38. L. I. Bruijin, M. K. Houseweart, S. Kato, K. L. Anderson, S. D. Anderson, E. Ohama, A. G. Reaume, R. W. Scott, and D. W. Cleveland, Science, 1998, 281, 1851.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Ide-Ektessabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ide-Ektessabi, A., Rabionet, M. The Role of Trace Metallic Elements in Neurodegenerative Disorders: Quantitative Analysis Using XRF and XANES Spectroscopy. ANAL. SCI. 21, 885–892 (2005). https://doi.org/10.2116/analsci.21.885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21.885

Navigation