Skip to main content
Log in

Sample Introduction Method in Gas Chromatography

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this review, we summarize the methods of sample introduction into a gas chromatograph. For volatile organic compounds, headspace measurements and purge-trap methods have been used traditionally. Recently, the trapped headspace method has been used in water quality testing. In addition, various solid-state adsorption methods have been developed, including a method in which the adsorbent is placed inside a needle, while new adsorbents and their applications have also been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chromatography Research Group in The Japan Society for Analytical Chemistry, “Capillary Gas Chromatography”, 1997, Asakura Publishing Co., Ltd., Tokyo, Japan.

    Google Scholar 

  2. Gas Chromatography Research Group in The Japan Society for Analytical Chemistry, “Textbook/or Gas Chromatography Workshop”, 2010.

  3. Basic of Gas Chromatography Analysis by Shimadzu Corporation, https://www.an.shimadzu.co.jp/gc/support/faq/fundamentals/sample_injection.htm.

  4. JIS K 0125, “Testing Methods for Industrial Wastewater”, 2016, Japanese Industrial Standards Committee, Tokyo.

    Google Scholar 

  5. Ministry of Health, Labour and Welfare, “Notification No. 261, Analytical Method Based on Provisions of Ministerial Ordinance on Water Quality Standards”, 2003.

    Google Scholar 

  6. Ministry of Health, Labour and Welfare, Health Service Bureau, Waterworks Division, “The 1st Time Summary of Water Quality Control Law Review Committee”, 2011.

    Google Scholar 

  7. Supelco SPME Fiber Selection Guide by Merck, https://www.sigmaaldrich.com/japan/analytical-chromatography/sample-preparation/spme/selecting-spme-fibers.html.

  8. T. Khalid, R. Aggio, P. White, B. D. L. Costello, R. Persad, H. Al-Kateb, P. Jones, C. S. Probert, and N. Ratcliffe, PLOS ONE, 2015, 10, e0143283.

    Article  PubMed  PubMed Central  Google Scholar 

  9. S. B. Soso and J. A. Koziel, Sci. Rep., 2017, 7, 5137.

    Article  PubMed  PubMed Central  Google Scholar 

  10. C. Banik, J. A. Koziel, and E. Flickinger, Data, 2020, 5.

    Google Scholar 

  11. K. G. Furton, Y. Hong, Y. Hsu, T. Luo, S. Rose, and J. Walton, J. Chromatogr. Sci., 2002, 40, 147.

    Article  CAS  PubMed  Google Scholar 

  12. U. Kotowska, M. Zalikowski, and V. A. Isidorov, Environ. Monit. Assess., 2012, 184, 2893.

    Article  CAS  PubMed  Google Scholar 

  13. T. Kyotani, T. Kawasaki, T. Ushiogi, and T. Hayakawa, RTRI REPORT, 2009, 23, 29.

    Google Scholar 

  14. H. Hanihara, T. Tsutsui, and R. Kon, Bunseki Kagaku, 2013, 62, 207.

    Article  CAS  Google Scholar 

  15. R. T. Griffith, K. Jayachandran, K. G. Shetty, W. W. Kenneth, and G. Furton, Sensors, 2007, 7, 1496.

    Article  CAS  PubMed Central  Google Scholar 

  16. S. Isaji, K. Orihashi, H. Akitsu, and M. Ishii, J. Hokkaido For. Prod. Res. Inst., 2005, 19, 7.

    CAS  Google Scholar 

  17. Summary of the Sixth and Seventh Interim Report of the Study Group on Sick House (Indoor Air Pollution) Problems, Attachment 3: Manual for Measurement of Chemical Substances in Indoor Air, Attachment 3-1: Collection and Measurement Methods for Indoor Airborne Chemical Substances by Ministry of Health, Labour and Welfare, Office of Chemical Substance Safety, Medical and Pharmacy Evaluation and Control Division, 2002, https://www.mhlw.go.jp/houdou/0107/h0724-1c1.html.

  18. E. Baltussen, P. Sandra, F. David, and C. Cramers, J. Micro. Sep., 1999, 11, 737.

    Article  CAS  Google Scholar 

  19. K. Berrou, C. Dunyach-Remy, J.-P. Lavigne, B. Roig, and A. Cadiere, Molecules, 2020, 25, 55.

    Article  CAS  Google Scholar 

  20. L. F. Castro and C. F. Ross, J. Inst. Brew., 2014, 121, 197.

    Article  Google Scholar 

  21. C. Diez-Simon, B. Ammerlaan, M. van den Berg, J. van Duynhoven, D. Jacobs, R. Mumm, and R. D. Hall, J. Chromatogr. A, 2020, 1624, 1.

    Article  Google Scholar 

  22. T. Inoue, Y. Matsumura, H. Takagi, Y. Oowada, Y. Watanabe, M. Fukuhara, T. Yamaura, T. Mutou, N. Okabe, T. Hasegawa, Y. Shio, M. Takeda, M. Sato, and H. Suzuki, in Proceedings of The 55th Annual Meeting of the Japanese Cancer Treatment Society, 2017, Yokohama, Japan, O25.

  23. W. Ma, P. Gao, J. Fan, Y. Hashi, and Z. Chen, Biomed. Chromatogr., 2015, 29, 961.

    Article  CAS  PubMed  Google Scholar 

  24. T. Furuhashi, R. Ishii, H. Onishi, and S. Ota, Front. Mol. Biosci., 2020, 7, 116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. K. Hirabayashi and Y. Sekine, Bulletin of the Institute of Advanced Biosciences, 2018, 2, 18.

    Google Scholar 

  26. T. Uebi, T. Hariyama, K. Suzuki, N. Kanayama, Y. Nagata, S. Ayabe-Kanamura, S. Yanase, Y. Ohtsubo, and M. Ozaki, Sci. Rep., 2020, 9, 12759.

    Article  Google Scholar 

  27. H. Kondo and N. Asai, Annual Report of Kyoto Prefectural Institute of Hygienic and Environ. Sciences, 2017, 62, 10.

    Google Scholar 

  28. F. Tanaka, K. Okazaki, T. Kashimura, Y. Ohwaki, M. Tatsuki, A. Sawada, T. Ito, and T. Miyazawa, Nippon Shokuhin Kagaku Kogaku Kaishi, 2016, 63, 101.

    Article  CAS  Google Scholar 

  29. L. Zhao, W. Wu, N. Tao, Y. Li, N. Wu, and X. Qin, Fish. Sci., 2015, 81, 947.

    Article  CAS  Google Scholar 

  30. Y. Goto, M. Matsuda, K. Sano, and S. Eto, Research Report of the Oita Industrial Science and Technology Center, 2014, 47.

    Google Scholar 

  31. Q. Zhou, X. Jia, Y-Z. Yao, B. Wang, C-Q. Wei, M. Zhang, and F. Huang, J. Agric. Food Chem., 2019, 67, 11454.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Aoki, Research Report of the Center for Health Sciences, Hyogo Prefectural Institute of Health and Lifestyle Sciences, 2013, 4, 46.

    Google Scholar 

  33. A. Wang, F. Fang, and J. Pawliszyn, J. Chromatogr., A, 2005, 1072, 127.

    Article  CAS  PubMed  Google Scholar 

  34. I. Ueta, Chromatography, 2013, 34, 23

    Article  CAS  Google Scholar 

  35. M. Iwai, F. Kondo, T. Suzuki, T. Ogawa, and H. Seno, Medical Mass Spectrometry, 2019, 3, 1.

    Google Scholar 

  36. M. Alonso, M. Castellanos, E. Besalú, and J. M. Sanchez, J. Chromatogr., A, 2012, 1252, 23.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Suzuki, F. Ishizawa, and K. Honda, Forensic Sci. Int., 2017, 278, 228.

    Article  CAS  PubMed  Google Scholar 

  38. M. Serasanambati, Y. Y. Broza, A. Marmur, and H. Haick, iScience, 2019, 11, 178.

    Article  CAS  PubMed  Google Scholar 

  39. Y. Ichiba, H. Hanihara, M. Fujiwara, T. Hirayama, K. Kazuno, S. Morishima, K. Shinada, and Y. Kawaguchi, Bunseki Kagaku, 2011, 60, 143.

    Article  CAS  Google Scholar 

  40. K. Sakurai and K. Honda, Tsukuba Journal of Biology, 2020, 19, 22.

    Google Scholar 

  41. C. Takasaka, K. Hirooka, Y. Yamamoto, and Y. Tomono, Research Report of the Kyoto Municipal Industrial Technology Research Institute, 2014, 4, 34.

    Google Scholar 

  42. K. Ogata and Y. Tsumura, Research Report of the Kyoto Municipal Industrial Technology Research Institute, 2018, 8, 100.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Enago (www.enago.jp) for English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Sugita.

Additional information

Kazutoshi Sugitareceived his degree from Tokyo University of Science in 2004, and has been working at a contract environmental analysis laboratory for about 28 years, where he has been involved in the measurement of dioxins and polycyclic aromatic hydrocarbons in the environment. He started his current position in 2014 and has been conducting research on the behavior of toxic components in the environment and in living organisms sing gas and liquid chromatographs.

Hiroshi Satoreceived his Master degree in 1983 and received a PhD degree in Pharmaceutical Sciences (2003) a Kyushu University in Japan. He had worked in Kao Corporation during 1985 – 1987 and then had worked in TOTO LTD. during 1987 – 2006. He is currently a professor of Nagasaki International University. His research is focused on the environmental analysis and bioremediation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugita, K., Sato, H. Sample Introduction Method in Gas Chromatography. ANAL. SCI. 37, 159–165 (2021). https://doi.org/10.2116/analsci.20SAR19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20SAR19

Keywords

Navigation