Skip to main content
Log in

Hybrid Carbon Film Electrodes for Electroanalysis

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Carbon materials have been widely used for electrochemical analysis and include carbon nanotubes, graphene, and borondoped diamond electrodes in addition to conventional carbon electrodes, such as those made of glassy carbon and graphite. Of the carbon-based electrodes, carbon film has advantages because it can be fabricated reproducibly and micro- or nanofabricated into electrodes with a wide range of shapes and sizes. Here, we report two categories of hybridtype carbon film electrodes for mainly electroanalytical applications. The first category consists of carbon films doped or surface terminated with other atoms such as nitrogen, oxygen and fluorine, which can control surface hydrophilicity and lipophilicity or electrocatalytic performance, and are used to detect various electroactive biochemicals. The second category comprises metal nanoparticles embedded in carbon film electrodes fabricated by co-sputtering, which exhibits high electrocatalytic activity for environmental and biological samples including toxic heavy metal ions and clinical sugar markers, which are difficult to detect at pure carbon-based electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. McCreery, Chem. Rev., 2008, 108, 2646.

    Article  CAS  PubMed  Google Scholar 

  2. W. Zhang, S. Zhu, R. Luque, S. Han, L. Hu, and G. Xu, Chem. Soc. Rev., 2015, 45, 715.

    Article  PubMed  Google Scholar 

  3. F. E. Galdino, J. P. Smith, S. I. Kwamou, D. K. Kampouris, J. Iniesta, G. C. Smith, J. A. Bonacin, and C. E. Banks, Anal. Chem., 2015, 87, 11666.

    Article  CAS  PubMed  Google Scholar 

  4. K. Nagamine, A. Nomura, Y. Ichimura, R. Izawa, S. Sasaki, H. Furusawa, H. Matsui, and S. Tokito, Anal. Sci., 2020, 36, 291.

    Article  CAS  PubMed  Google Scholar 

  5. G. M. Swain and R. Rameshan, Anal. Chem., 1993, 65, 345.

    Article  CAS  Google Scholar 

  6. R. G. Compton, J. S. Foord, and F. Marken, Electroanalysis, 2003, 15, 1349.

    Article  CAS  Google Scholar 

  7. R. Tenne, K. Patel, K. Hashimoto, and A. Fujishima, J. Electroanal. Chem., 1993, 347, 409.

    Article  CAS  Google Scholar 

  8. K. Yoshimi, Y. Naya, N. Mitani, T. Kato, M. Inoue, S. Natori, T. Takahashi, A. Weitemier, N. Nishikawa, T. McHugh, Y. Einaga, and S. Kitazawa, Neurosci. Res., 2011, 71, 49.

    Article  PubMed  Google Scholar 

  9. Y. L. Hsin, K. C. Hwang, and C.-T. Yeh, J. Am. Chem. Soc., 2007, 129, 9999

    Article  CAS  PubMed  Google Scholar 

  10. C. Luo. H. Xie, Q. Wang, G. Luo, and C. Liu, J. Nanomaterials, 2015, 560392

    Google Scholar 

  11. L. T. Qu, Y. Liu, J. B. Baek, and L. M. Dai, ACS Nano, 2010, 4, 1321.

    Article  CAS  PubMed  Google Scholar 

  12. Q. Xue, D. Kato, T. Kamata, Q. Guo, T. You, and O. Niwa, Analyst, 2013, 138, 6463.

    Article  CAS  PubMed  Google Scholar 

  13. A. Gholizadeh, S. Shahrokhian, A. Iraji zad, S. Mohajerzadeh, M. Vosoughi, S. Darbari, J. Koohsorkhi, M. Mehran, Anal. Chem., 2012, 84, 5932.

    Article  CAS  PubMed  Google Scholar 

  14. P. Suvarnaphaet and S. Pechprasarn, Sensors, 2017, 17, 2161.

    Article  PubMed  PubMed Central  Google Scholar 

  15. T. Miyake, S. Yoshino, T. Yamada, K. Hata, and M. Nishizawa, J. Am. Chem. Soc., 2011, 133, 5129.

    Article  CAS  PubMed  Google Scholar 

  16. O. Niwa, Bull. Chem. Soc. Jpn., 2005, 78, 555.

    Article  CAS  Google Scholar 

  17. M. L. Kaplan, P. H. Schmidt, C. H. Chen, and W. M. Walsh, Appl. Phys. Lett., 1980, 36, 867.

    Article  CAS  Google Scholar 

  18. A. Rojo, A. Rosenstratten, and D. Anjo, Anal. Chem., 1986, 58, 2988.

    Article  CAS  Google Scholar 

  19. S. Ranganathan and R. L. McCreery, Anal. Chem., 2001, 73, 893.

    Article  CAS  PubMed  Google Scholar 

  20. M. Morita, K. Hayashi, T. Horiuchi, S. Shibano, K. Yamamoto, and K. J. Aoki, J. Electrochem. Soc., 2014, 161, H178.

    Article  CAS  Google Scholar 

  21. R. Schnupp, R. Kuhnhold, G. Temmel, E. Burte, and H. Ryssel, Biosens. Bioelectron., 1998, 13, 889.

    Article  CAS  Google Scholar 

  22. S. Hirono, S. Umemura, M. Tomita, and R. Kaneko, Appl. Phys. Lett., 2002, 80, 6240.

    Article  Google Scholar 

  23. L. Huang, Y. Cao, and D. Diao, Electrochim. Acta, 2018, 262, 173.

    Article  CAS  Google Scholar 

  24. J. J. Blackstock, A. A. Rostami, A. M. Nowak, R. L. McCreery, M. R. Freeman, and M. T. McDermott, Anal. Chem., 2004, 76, 2544.

    Article  CAS  PubMed  Google Scholar 

  25. H. Yu, P. Li, and J. Robertson, Diamond Relat. Mater., 2011, 20, 1020

    Article  CAS  Google Scholar 

  26. O. Niwa, J. Jia, Y. Sato, D. Kato, R. Kurita, K. Maruyama, K. Suzuki, and S. Hirono, J. Am. Chem. Soc., 2006, 128, 7144.

    Article  CAS  PubMed  Google Scholar 

  27. T. Kamata, D. Kato, H. Ida, and O. Niwa, Diamond Relat. Mater., 2014, 49, 25.

    Article  CAS  Google Scholar 

  28. J. Jia, D. Kato, R. Kurita, Y. Sato, K. Maruyama, K. Suzuki, S. Hirono, T. Ando, and O. Niwa, Anal. Chem., 2007, 79, 98.

    Article  CAS  PubMed  Google Scholar 

  29. D. Kato, N. Sekioka, A. Ueda, R. Kurita, S. Hirono, K. Suzuki, and O. Niwa, Angew. Chem. Int. Ed., 2008, 47, 6681.

    Article  CAS  Google Scholar 

  30. D. Kato, N. Sekioka, A. Ueda, R. Kurita, S. Hirono, K. Suzuki, and O. Niwa, J. Am. Chem. Soc., 2008, 130, 3716.

    Article  CAS  PubMed  Google Scholar 

  31. D. Kato, K. Goto, S. Fujii, A. Takatsu, R. Kurita, S. Hirono, and O. Niwa, Anal. Chem., 2011, 83, 7595.

    Article  CAS  PubMed  Google Scholar 

  32. N. Sekioka, D. Kato, R. Kurita, S. Hirono, and O. Niwa, Sens. Actuators, B, 2008, 129, 442.

    Article  CAS  Google Scholar 

  33. N. Sekioka, D. Kato, A. Ueda, T. Kamata, R. Kurita, A. Umemura, S. Hirono, and O. Niwa, Carbon, 2008, 46, 1918.

    Article  CAS  Google Scholar 

  34. J. Ozaki, T. Anahara, N. Kimura, and A. Oya, Carbon, 2006, 44, 3358.

    Article  CAS  Google Scholar 

  35. K. P. Gong, F. Du, Z. H. Xia, M. Durstock, and L. M. Dai, Science, 2009, 323, 760.

    Article  CAS  PubMed  Google Scholar 

  36. T. Nakajima, M. Koh, R. N. Singh, and M. Shimada, Electrochim. Acta, 1999, 44, 2879.

    Article  CAS  Google Scholar 

  37. V. N. Khabashesku, W. E. Billups, and J. L. Margrave, Acc. Chem. Res., 2002, 35, 1087.

    Article  CAS  PubMed  Google Scholar 

  38. E. Silva, A. C. Bastos, M. Neto, and A. J. Fernandes, Sens. Actuators, B, 2014, 204, 544.

    Article  CAS  Google Scholar 

  39. K. Yoo, B. Miller, R. Kalish, and X. Shi, Electrochem. Solid-State Lett., 1999, 2, 233.

    Article  CAS  Google Scholar 

  40. A. Zeng, E. Liu, S. N. Tan, S. Zhang, and J. Cao, Electroanalysis, 2002, 14, 1294.

    Article  CAS  Google Scholar 

  41. X. Yang, L. Haubold, G. DeVivo, and G. M. Swain, Anal. Chem., 2012, 84, 6240.

    Article  CAS  PubMed  Google Scholar 

  42. B. C. Lourencao, T. A. Silva, O. Fatibello-Filho, and G. M. Swain, Electrochim. Acta, 2014, 143, 398.

    Article  CAS  Google Scholar 

  43. R. F. Brocenschi, R. C. Rocha-Filho, L. Li and G. M. Swain, J. Electroanal. Chem., 2014, 712, 207.

    Article  CAS  Google Scholar 

  44. D’N. Hamblin, J. Oiu, L. Haubold, and G. M. Swain, Anal. Methods, 2015, 7, 4481.

    Article  CAS  Google Scholar 

  45. R. Jarosova, J. Rutherford, and G. M. Swain, Analyst, 2016, 147, 6031.

    Article  Google Scholar 

  46. Y. Tanaka, M. Furuta, K. Kuriyama, R. Kuwabara, Y. Katsuki, T. Kondo, A. Fujishima, and K. Honda, Electrochim. Acta, 2011, 56, 1172.

    Article  CAS  Google Scholar 

  47. T. Kamata, D. Kato, S. Hirono, and O. Niwa, Anal. Chem., 2013, 85, 9845.

    Article  CAS  PubMed  Google Scholar 

  48. T. Kamata, D. Kato, S. Hirono, and O. Niwa, Anal. Sci., 2015, 37, 651.

    Article  Google Scholar 

  49. T. Kamata, D. Kato, and O. Niwa, Nanoscale, 2019, 11, 10239.

    Article  CAS  PubMed  Google Scholar 

  50. S. Ohta, S. Shiba, T. Yajima, T. Kamata, D. Kato, and O. Niwa, J. Photopolym. Sci. Technol, 2019, 32, 523.

    Article  CAS  Google Scholar 

  51. S. Ohta, S. Shiba, T. Yajima, and O. Niwa, Electrochemistry, 2020, 88, 387.

    Article  CAS  Google Scholar 

  52. H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J.-i. Ozaki, and S. Miyata, J. Power Sources, 2009, 187, 93.

    Article  CAS  Google Scholar 

  53. L. Qu, Y. Liu, J.-B. Baek, and L. Dai, ACS Nano, 2010, 4, 1321.

    Article  CAS  PubMed  Google Scholar 

  54. L. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, and R. S. Ruoff, Energy Environ. Sci., 2012, 5, 7936

    Article  CAS  Google Scholar 

  55. D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura, Science, 2016, 357, 361.

    Article  Google Scholar 

  56. T. Goto, T. Yasukawa, K. Kanda, S. Matsui, and F. Mizutani, Anal. Sci., 2011, 27, 91.

    Article  CAS  PubMed  Google Scholar 

  57. M. Ishihara, M. Suzuki, T. Watanabe, T. Nakamura, A. Tanaka, and Y. Koga, Diamond Relat. Mater., 2005, 14, 989.

    Article  CAS  Google Scholar 

  58. A. Ueda, D. Kato, N. Sekioka, T. Kamata, R. Kurita, H. Uetsuka, Y. Hattori, S. Hirono, S. Umemura, and O. Niwa, Carbon, 2009, 47, 1943.

    Article  CAS  Google Scholar 

  59. A. Oda, D. Kato, K. Yoshioka, M. Tanaka, T. Kamata, M. Todokoro, and O. Niwa, Electrochim. Acta, 2016, 197, 152.

    Article  CAS  Google Scholar 

  60. E. Kuraya, S. Nagatomo, K. Sakata, D. Kato, O. Niwa, T. Nishimi, and M. Kunitake, Anal. Chem., 2015, 87, 1489.

    Article  CAS  PubMed  Google Scholar 

  61. E. Kuraya, S. Nagatomo, K. Sakata, D. Kato, O. Niwa, T. Nishimi, and M. Kunitake, Anal. Chem., 2016, 88, 1202.

    Article  CAS  PubMed  Google Scholar 

  62. F. W. Campbell and R. G. Compton, Anal. Bioanal. Chem., 2010, 396, 241.

    Article  CAS  PubMed  Google Scholar 

  63. X. Dai, O. Nekrassova, M. E. Hyde, and R. G. Compton, Anal. Chem., 2004, 76, 5924.

    Article  CAS  PubMed  Google Scholar 

  64. S. Shahrokhian and S. Rastgar, Electrochim. Acta, 2012, 78, 42.

    Article  Google Scholar 

  65. T. Hayashi, S. Hirono, M. Tomita, and S. Umemura, Nature, 1996, 387, 772.

    Article  Google Scholar 

  66. S. Shiba, S. Takahashi, T. Kamata, H. Hachiya, D. Kato, and O. Niwa, Sens. Materials, 2019, 37, 1135.

    Article  Google Scholar 

  67. N. L. Pocard, D. C. Alsmeyer,. R. L. McCreery, T. X. Neeman, and M. R. Callstrom, J. Am. Chem. Soc., 1992, 114, 769.

    Article  CAS  Google Scholar 

  68. H. D. Hutton, N. L. Pocard, C. Alsmeyer, O. J. A. Schueller, R. J. Spontak, M. E. Huston, W. Huang, W. Huang, R. L. McCreery, T. X. Neeman, and M. R. Callstrom, Chem. Mater., 1993, 5, 1727.

    Article  CAS  Google Scholar 

  69. T. You, O. Niwa, T. Horiuchi, M. Tomita, Y. Iwasaki, Y. Ueno, and S. Hirono, Chem. Mater., 2002, 14, 4796.

    Article  CAS  Google Scholar 

  70. T. You, O. Niwa, M. Tomita, and S. Hirono, Anal. Chem., 2003, 75, 2080.

    Article  CAS  PubMed  Google Scholar 

  71. T. Kamata, M. Sumimoto, S. Shiba, R. Kurita, O. Niwa, and D. Kato, Nanoscale, 2019, 11, 8845.

    Article  CAS  PubMed  Google Scholar 

  72. N. W. Khun and E. Liu, Electroanalysis, 2009, 27, 2590.

    Article  Google Scholar 

  73. X.-H. Pham, C. A. Li, K. N. Han, B.-C. H.-Nguyen, T.-H. Le, E. Ko, J. H. Kim, and G. H. Seong, Sens. Actuators, B, 2014, 193, 815.

    Article  CAS  Google Scholar 

  74. O. Niwa, D. Kato, R. Kurita, T. You, Y. Iwasaki, and S. Hirono, Sens. Materials, 2007, 19, 225.

    CAS  Google Scholar 

  75. Y. Chen, A. Yamaguchi, T. Atou, K. Morita, and N. Teramae, Chem. Lett., 2006, 35, 1352.

    Article  CAS  Google Scholar 

  76. Y. Song and G. M. Swain, Anal. Chem., 2007, 79, 2412.

    Article  CAS  PubMed  Google Scholar 

  77. W. T. Wahyuni, T. A. Ivandini, E. Saepudin, and Y. Einaga, Anal. Biochem., 2016, 497, 68.

    Article  CAS  PubMed  Google Scholar 

  78. A. Liu, E. Liu, G. Yang, N. W. Khun, and W. Ma, Pure Appl. Chem., 2010, 82, 2217.

    Article  CAS  Google Scholar 

  79. D. Kato, T. Kamata, D. Kato, H. Yanagisawa, and O. Niwa, Anal. Chem., 2016, 88, 2944.

    Article  CAS  PubMed  Google Scholar 

  80. S. Shiba, S. Takahashi, T. Kamata, H. Hachiya, D. Kato, and O. Niwa, Sens. Materials, 2019, 37, 1135.

    Article  Google Scholar 

  81. T. You, O. Niwa, R. Kurita, Y. Iwasaki, K. Hayashi, K. Suzuki, and S. Hirono, Electroanalysis, 2004, 16, 54.

    Article  CAS  Google Scholar 

  82. T. A. Ivandini, R. Sato, Y. Makide, A. Fujishima, and Y. Einaga, Anal. Chem., 2006, 78, 6291.

    Article  CAS  PubMed  Google Scholar 

  83. T. You, O. Niwa, Z. Chen, K. Hayashi, M. Tomita, and S. Hirono, Anal. Chem., 2003, 75, 5191.

    Article  CAS  PubMed  Google Scholar 

  84. G. Abrasonis, M. Krause, A. Mucklich, K. Sedlackova, G. Radnoczi, U. Kreissig, A. Kolitsch, and W. Moller, Carbon, 2007, 45, 2995.

    Article  CAS  Google Scholar 

  85. J. C. Harfield, K. E. Toghill, C. B. McAuley, C. Downing, and R. G. Compton, Electroanalysis, 2011, 23, 931.

    Article  CAS  Google Scholar 

  86. S. Shiba, D. Kato, T. Kamata, and O. Niwa, Nanoscale, 2016, 8, 12887.

    Article  CAS  PubMed  Google Scholar 

  87. S. Shiba, R. Maruyama, T. Kamata, D. Kato, and O. Niwa, Electroanalysis, 2018, 30, 1407.

    Article  CAS  Google Scholar 

  88. T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, and S. Hirono, Electrochem. Commun., 2002, 4, 468.

    Article  CAS  Google Scholar 

  89. R. Pauliukaite and C. M. A. Brett, Electroanalysis, 2005, 17, 1354.

    Article  CAS  Google Scholar 

  90. K. E. Toghill, G. G. Wildgoose, A. Moshar, C. Mulcahy, and R. G. Compton, Electroanalysis, 2008, 20, 1731.

    Article  CAS  Google Scholar 

  91. M. Antonopoulou, E. Evgenidou, D. Lambropoulou, and I. Konstantinou, Water Res., 2014, 53, 215.

    Article  CAS  PubMed  Google Scholar 

  92. K. Uosaki, Y. Sato, and H. Kita, Langmuir, 1991, 7, 1510.

    Article  CAS  Google Scholar 

  93. M. Haruta, Faraday Discuss., 2011, 152, 11.

    Article  CAS  PubMed  Google Scholar 

  94. P. Luo, S. V. Prabhu, and R. P. Baldwin, Anal. Chem., 1990, 62, 752.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Masashi Kunitake and Eisuke Kuraya for discussions about fluorinated carbon films. This work was supported by a Grant-in-Aid for Scientific Research (O. N. 17H03081 and 20K21133) from the Ministry of Education, Culture, Sports and Technology Japan, and the Saitama Prefectural Industry-Academia Collaborative Development Project Subsidy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Niwa.

Additional information

Osamu Niwareceived his B.S., M.S., and Ph.D. from Kyushu University in 1981, 1983 and 1990, respectively. He joined the NTT Corporation in 1983 and the National Institute of Advanced Industrial Science and Technology (AIST) from 2004 to 2015. Since 2015, he is a professor at the Saitama Institute of Technology. His research interests are electrochemical analysis, biosensor and carbon material.

Saki Ohtareceived her masterʼs degree from Saitama Institute of Technology. From 2020, she is a Ph.D. student of Graduate School of Life Science and Green Chemistry, Saitama Institute of Technology. Her research interest is development of electrode surface processing for suppress fouling by biomolecules.

Shota Takahashireceived his bachelorʼs degree from Saitama Institute of Technology. From 2020, he is a Master student of the Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology. His research interest is the development of metal nanoparticle modified electrodes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niwa, O., Ohta, S., Takahashi, S. et al. Hybrid Carbon Film Electrodes for Electroanalysis. ANAL. SCI. 37, 37–47 (2021). https://doi.org/10.2116/analsci.20SAR15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20SAR15

Keywords

Navigation