Skip to main content
Log in

Response of HPRT Gene Fragment Functionalized Gold Nanoparticles to Gamma Ray Irradiation

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Radiation-sensitive biomolecules are highly significant for studying biological effects of radiation and developing ionizing radiation detectors based on biomolecules. In this work, we selected hypoxanthine phosphoribosyl transferase gene fragments sensitive to gamma-ray irradiation as a sensing element for radiation detection. The end was modified with thiol groups. The thiol-modified oligonucleotide sequences were coupled to the surface of gold nanoparticles by Au'S covalent bonds. The DNA attached to the surface of gold nanoparticles forms a DNA-AuNPs assembly through base pairing. The assembly was irradiated by gamma rays. And its response to radiation was studied with ultraviolet-visible spectroscopy and surface-enhanced Raman scattering (SERS) spectroscopy techniques. SERS spectroscopy and ultraviolet spectroscopy can detect the response of the DNA-AuNPs assembly to gamma-ray irradiation below 100 and 100–250 Gy, respectively. The results indicated that it was feasible to develop a new approach of gamma-ray detectors using biomolecular assemblies of gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nimker, K. Sharma, R. Saraswathy, and S. Chandna, Health Phys., 2019, 116, 677.

    Article  CAS  PubMed  Google Scholar 

  2. R. I. Berbeco, H. Korideck, W. Ngwa, R. Kumar, J. Patel, S. Sridhar, S. Johnson, B. D. Price, A. Kimmelman, and G. M. Makrigiorgos, Radiat. Res., 2012, 178, 604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. J. T. Cajiao, M. P. Carante, M. A. B. Rodriguez, and F. Ballarini, DNA Repair, 2017, 58, 38.

    Article  Google Scholar 

  4. H. M. J. Al-Ta’ii, V. Periasamy, and Y. M. Amin, J. Appl. Phys., 2015, 118, 114502.

    Article  Google Scholar 

  5. S. R. Dugasani, J. A. Kim, B. Kim, P. Joshirao, B. Gnapareddy, C. Vays, T. Kim, S. H. Park, and V. Manchanda, ACS Appl. Mater. Inter., 2014, 6, 2974.

    Article  CAS  Google Scholar 

  6. T. Kuritz, in “Unattended Radiation Sensor Systems for Remote Applications”, ed. J. I. Trombka, D. P. Spears, and P. H. Solomon, 2002, Washington, D.C., 167.

  7. S. G. Jorge, B. V. Matilde, A. M. Magdalena, and B. Miguel, Appl. Radiat. Isot., 2012, 71, 66.

    Article  Google Scholar 

  8. A. N. Sidorov and T. M. Orlando, J. Phys. Chem. Lett., 2013, 4, 2328.

    Article  CAS  Google Scholar 

  9. A. Kumar and M. D. Sevilla, Chem.Phys.Chem, 2009, 10, 1426.

    Article  CAS  PubMed  Google Scholar 

  10. C. A. Mirkin, R. L. Letsinger, R. C. Mucic,and J. J. Storhoff, Nature, 1996, 382, 607.

    Article  CAS  PubMed  Google Scholar 

  11. K. Wang, W. Zhang, X. Zhang, X. Hu, S. Chang, and H. Zhang, ACS Appl. Mater. Inter., 2020, 12, 42403.

    Article  CAS  Google Scholar 

  12. L. Ou, P. Jin, X. Chu, J. Jiang, and R. Yu, Anal. Chem., 2010, 82, 6015.

    Article  CAS  PubMed  Google Scholar 

  13. X. Zhang, Z. Lou, A. Wang, and H. Zhang, Anal. Lett. 2012, 45, 850.

    Article  CAS  Google Scholar 

  14. L. Li, R. Xiao, Q. Wang, Z. Rong, X. Zhang, P. Zhou, H. Fu, S. Wang, and Z. Wang, RSC Adv., 2018, 8, 5119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Kundu and M. Jayachandran, RSC Adv., 2013, 3, 16486.

    Article  CAS  Google Scholar 

  16. G. Frens, Nat. Phys. Sci., 1973, 241, 20.

    Article  CAS  Google Scholar 

  17. J. Liu and Y. Lu, Nat. Protoc., 2006, 1, 246.

    Article  CAS  PubMed  Google Scholar 

  18. H. D. Hill and C. A. Mirkin, Nat. Protoc., 2006, 1, 324.

    Article  CAS  PubMed  Google Scholar 

  19. T. Solomun, H. Seitz, and H. Sturm, J. Phys. Chem. B, 2009, 113, 11557.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Yang, S. Matsubara, M. Nogami, and J. Shi, Mater. Sci. Eng. B, 2007, 140, 172.

    Article  CAS  Google Scholar 

  21. S. Link and M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 4212.

    Article  CAS  Google Scholar 

  22. B. D. Michael and P. O’Neill, Science, 2000, 287, 1603.

    Article  CAS  PubMed  Google Scholar 

  23. B. Halliwell, Free Radical Res., 2007, 41, 376.

    Article  CAS  Google Scholar 

  24. E. Alizadeh, T. M. Orlando, and L. Sanche, Annu. Rev. Phys. Chem., 2015, 66, 379.

    Article  CAS  PubMed  Google Scholar 

  25. B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science, 2000, 287, 1658.

    Article  PubMed  Google Scholar 

  26. M. A. Huels, B. Boudaïffa, P. Cloutier, D. Hunting, and L. Sanche, J. Am. Chem. Soc., 2003, 125, 4467.

    Article  CAS  PubMed  Google Scholar 

  27. M. Brezeanu, F. Träger, and F. Hubenthal, J. Biol. Phys., 2009, 35, 163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. R. Panikkanvalappil, M. A. Mahmoud, M. A. Mackey, and M. A. El-Sayed, ACS Nano, 2013, 7, 7524.

    Article  CAS  PubMed  Google Scholar 

  29. S. E. J. Bell and N. M. S. Sirimuthu, J. Am. Chem. Soc., 2006, 128, 15580.

    Article  CAS  PubMed  Google Scholar 

  30. L. Xu, Z. Lei, J. Li, C. Zong, C. Yang, and B. Bin, J. Am. Chem. Soc., 2015, 137, 5149.

    Article  CAS  PubMed  Google Scholar 

  31. A. Barhoumi and N. J. Halas, J. Am. Chem. Soc., 2010, 132, 12792.

    Article  CAS  PubMed  Google Scholar 

  32. E. Papadopoulou and S. E. J. Bell, Angew. Chem. Int. Ed., 2011, 50, 9058.

    Article  CAS  Google Scholar 

  33. E. Alizadeh and L. Sanche, Chem. Rev., 2012, 112, 5578.

    Article  CAS  PubMed  Google Scholar 

  34. P. Zygmanski, B. Liu, P. Tsiamas, F. Cifter, M. Petersheim, J. Hesser, and E. Sajo, Phys. Med. Biol., 2013, 58, 7961.

    Article  PubMed  Google Scholar 

  35. M. B. Hahn, S. Meyer, H. J. Kunte, T. Solomun, and H. Sturm, Phys. Rev. E, 2017, 95, 052419.

    Article  PubMed  Google Scholar 

  36. H. Chun and C. L. C. James, AIMS Bioeng., 2016, 3, 352.

    Article  Google Scholar 

  37. R. Casanovas, E. Prieto, and M. Salvadó, Appl. Radiat. Isot., 2016, 118, 154.

    Article  CAS  PubMed  Google Scholar 

  38. S. Kodama, S. Kurosawa, M. Ohno, Y. Morishita, H. Usami, M. Hayashi, M. Sasano, T. Azuma, H. Tanaka, V. Kochurikhin, A. Yamaji, M. Yoshino, H. Sato, Y. Ohashi, K. Kamada, Y. Yokota, A. Yoshikawa, and T. Torii, Appl. Phys. Express, 2020, 13, 047002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (project No. 11575086, 11775115), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuquan Chang or Haiqian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, K., Chen, F. et al. Response of HPRT Gene Fragment Functionalized Gold Nanoparticles to Gamma Ray Irradiation. ANAL. SCI. 37, 309–314 (2021). https://doi.org/10.2116/analsci.20P248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P248

Keywords

Navigation