Skip to main content
Log in

Air-pressure-driven Separable Microdevice to Control the Anisotropic Curvature of Cell Culture Surface

  • Advancements in Instrumentation
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on a novel microdevice to tune the curvature of a cell-adhering surface by controlling the air-pressure and micro-slit. Human aortic smooth muscle cells were cultured on demi-cylindrical concaves formed on a microdevice. Their shape-adapting behavior could be tracked when the groove direction was changed to the orthogonal direction. This microdevice demonstrated live observation of cells responding to dynamic changes of the anisotropic curvature of the adhering surface and could serve as a new platform to pursue mechanobiology on curved surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Jansen, D. M. Donato, H. E. Balcioglu, T. Schmidt, E. H. J. Danen, and G. H. Koenderink, Biochim. Biophys. Acta, Mol. Cell Res., 2015, 1853, 3043.

    Article  CAS  Google Scholar 

  2. N. I. Petridou, Z. Spiró, and C. P. Heisenberg, Nat. Cell Biol., 2017, 19, 581.

    Article  CAS  PubMed  Google Scholar 

  3. T. J. Kirby and J. Lammerding, Nat. Cell Biol., 2018, 20, 373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N. Huebsch, Acta Biomater., 2019, 94, 97.

    Article  CAS  PubMed  Google Scholar 

  5. H. Liu, Y. Wang, K. Cui, Y. Guo, X. Zhang, and J. Qin, Adv. Mater., 2019, 31, 1902042.

    Article  CAS  Google Scholar 

  6. M. Rumpler, A. Woesz, J. W. C. Dunlop, J. T. van Dongen, and P. Fratzl, J. R. Soc. Interface, 2008, 5, 1173.

    Article  PubMed  PubMed Central  Google Scholar 

  7. W. R. Thompson, A. Scott, M. T. Loghmani, S. R. Ward, and S. J. Warden, Phys. Ther., 2016, 96, 560.

    Article  PubMed  Google Scholar 

  8. J. L. Ng, M. E. Kersh, S. Kilbreath, and M. Knothe Tate, Front. Physiol., 2017, 8, 303.

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. C. Lampi and C. A. Reinhart-King, Sci. Transl. Med., 2018, 10, eaao0475.

    Article  PubMed  Google Scholar 

  10. J. Foolen, T. Yamashita, and P. Kollmannsberger, J. Phys. D, 2016, 49, 053001.

    Article  Google Scholar 

  11. D. Baptista, L. Teixeira, C. van Blitterswijk, S. Giselbrecht, and R. Truckenmüller, Trends Biotechnol., 2019, 37, 838.

    Article  CAS  PubMed  Google Scholar 

  12. R. K. Assoian, N. D. Bade, C. V. Cameron, and K. J. Stebe, Open Biol., 2019, 9, 190155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. J. P. Callens, R. J. C. Uyttendaele, L. E. Fratila-Apachitei, and A. A. Zadpoor, Biomaterials, 2020, 232, 119739.

    Article  CAS  PubMed  Google Scholar 

  14. N. D. Bade, T. Xu, R. D. Kamien, R. K. Assoian, and K. J. Stebe, Biophys. J., 2018, 114, 1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L. Pieuchot, J. Marteau, A. Guignandon, T. D. Santos, I. Brigaud, P. F. Chauvy, T. Cloatre, A. Ponche, T. Petithory, P. Rougerie, M. Vassaux, J. L. Milan, N. T. Wakhloo, A. Spangenberg, M. Bigerelle, and K. Anselme, Nat. Commun., 2018, 9, 3995.

    Article  PubMed  PubMed Central  Google Scholar 

  16. M. Werner, A. Petersen, N. A. Kurniawan, and C. V. C. Bouten, Adv. Biosyst., 2019, 3, 1900080.

    Article  Google Scholar 

  17. K. E. Broaders, A. E. Cerchiari, and Z. J. Gartner, Integr. Biol., 2015, 7, 1611.

    Article  Google Scholar 

  18. T. Yamashita, P. Kollmannsberger, K. Mawatari, T. Kitamori, and V. Vogel, Acta Biomater., 2016, 45, 85.

    Article  CAS  PubMed  Google Scholar 

  19. S. Ehrig, B. Schamberger, C. M. Bidan, A. West, C. Jacobi, K. Lam, P. Kollmannsberger, A. Petersen, P. Tomancak, K. Kommareddy, F. D. Fischer, P. Fratzl, and J. W. C. Dunlop, Sci. Adv., 2019, 5, eaav9394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. T. Ozdemir, L. C. Xu, C. Siedlecki, and J. L. Brown, Integr. Biol., 2013, 5, 1407.

    Article  CAS  Google Scholar 

  21. M. Werner, S. B. G. Blanquer, S. P. Haimi, G. Korus, J. W. C. Dunlop, G. N. Duda, Dirk W. Grijpma, and A. Petersen, Adv. Sci., 2016, 4, 1600347.

    Article  Google Scholar 

  22. P. Kollmannsberger, C. M. Bidan, J. W. C. Dunlop, P. Fratzl, and V. Vogel, Sci. Adv., 2018, 4, eaao4881.

    Article  PubMed  PubMed Central  Google Scholar 

  23. D. Cheng, R. K. Jayne, A. Tamborini, J. Eyckmans, A. E. White, and C. S. Chen, Biofabrication, 2019, 11, 021001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Y. Park, D. H. Lee, E. J. Lee, and S. H. Lee, Lab Chip, 2009, 9, 2043.

    Article  CAS  PubMed  Google Scholar 

  25. J. Zhou and L. E. Niklason, Integr. Biol., 2012, 4, 1487.

    Article  CAS  Google Scholar 

  26. N. Venugopal Menon, H. M. Tay, K. T. Pang, R. Dalan, S. C. Wong, X. Wang, K. H. H. Li, and H. W. Hou, APL Bioeng., 2018, 2, 016103.

    Article  PubMed  PubMed Central  Google Scholar 

  27. H. Jeon, C. G. Simon, and G. Kim, J. Biomed. Mater. Res., Part B, 2014, 102, 1580.

    Article  Google Scholar 

  28. Y. Y. Biton and S. A. Safran, Phys. Biol., 2009, 6, 046010.

    Article  CAS  PubMed  Google Scholar 

  29. C. Liu, J. Xu, S. He, W. Zhang, H. Li, B. Huo, and B. Ji, J. Mech. Behav. Biomed. Mater., 2018, 88, 330.

    Article  PubMed  Google Scholar 

  30. P. R. Standley, A. Camaratta, B. P. Nolan, C. T. Purgason, and M. A. Stanley, Am. J. Physiol. Heart Circ. Physiol., 2002, 283, H1907.

    Article  CAS  PubMed  Google Scholar 

  31. B. Liu, M. J. Qu, K. R. Qin, H. Li, Z. K. Li, B. R. Shen, and Z. L. Jiang, Biophys. J., 2008, 94, 1497.

    Article  CAS  PubMed  Google Scholar 

  32. M. Ebara, K. Uto, N. Idota, J. Hoffman, and T. Aoyagi, Int. J. Nanomed., 2014, 9, 117.

    Article  CAS  Google Scholar 

  33. B. Ladoux and R. M. Mège, Nat. Rev. Mol. Cell Biol., 2017, 18, 743.

    Article  CAS  PubMed  Google Scholar 

  34. N. Tanaka, T. Yamashita, A. Sato, V. Vogel, and Y. Tanaka, PLoS ONE, 2017, 12, e0173647.

    Article  PubMed  PubMed Central  Google Scholar 

  35. J. Nakanishi, K. Sugiyama, H. Matsuo, Y. Takahashi, S. Omura, and T. Nakashima, Anal. Sci., 2019, 35, 65.

    Article  CAS  PubMed  Google Scholar 

  36. K. Sato, A. Kodama, C. Kase, S. Hirakawa, and M. Ato, Anal. Sci., 2018, 34, 323.

    Article  CAS  PubMed  Google Scholar 

  37. K. Sato and K. Sato, Anal. Sci., 2018, 34, 755.

    Article  CAS  PubMed  Google Scholar 

  38. L. S. Shiroma, M. H. O. Piazzetta, G. F. Duarte-Junior, W. K. T. Coltro, E. Carrilho, A. L. Gobbi, and R. S. Lima, Sci. Rep., 2016, 6, 1.

    Article  Google Scholar 

  39. M. Chu, T. T. Nguyen, E. K. Lee, J. L. Morival, and M. Khine, Lab Chip, 2017, 17, 267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by KAKENHI (Grant Numbers 18H05963 and 19K20679) and bilateral programs from Japan Society for the Promotion of Science, Keio Gijuku Academic Development Funds and Keio Leading-edge Laboratory grant. We would like to thank Prof. Kenjiro Takemura (Keio University) and Dr. Chikahiro Imashiro (now Tokyo Women’s Medical University) for their kind support with machining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahiro Yamashita.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, T., Nishina, T., Matsushita, I. et al. Air-pressure-driven Separable Microdevice to Control the Anisotropic Curvature of Cell Culture Surface. ANAL. SCI. 36, 1015–1019 (2020). https://doi.org/10.2116/analsci.20A001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20A001

Keywords

Navigation