Skip to main content
Log in

Flotation–Spectrophotometric Determination of Mercury in Water Samples Using Iodide and Ferroin

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This paper describes a simple and highly selective method for separation, preconcentration and spectrophotometric determination of trace amounts of mercury. The method is based on the flotation of an ion-associate of HgI42– and ferroin between aqueous and n-heptane interface at pH 5. The ion-associate was then separated and dissolved in acetonitrile to measure its absorbance. Quantitative flotation of the ion-associate was achieved when the volume of the water sample containing Hg(II) was varied over 50–800 ml. Beer’s law was obeyed over the concentration range of 3.2 × 10–8–9.5 × 10–7 mol l–1 with an apparent molar absorptivity of 1 × 106 l mol–1 cm–1 for a 500 ml aliquot of the water sample. The detection limit (n = 25) was 6.2 × 10–9 mol l–1, and the RSD (n = 5) for 3.19 × 10–7 mol l–1 of Hg(II) was 1.9%. A notable advantage of the method is that the determination of Hg(II) is free from the interference of the almost all cations and anions found in the environmental and waste water samples. The determination of Hg(II) in tap, synthetic waste, and seawater samples was carried out by the present method and a well-established method of extraction with dithizone. The results were satisfactorily comparable so that the applicability of the proposed method was confirmed in encountering with real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O’Neil, “Mercury in Environmental Chemistry”, 2nd ed., 1995, Chapman and Hall, London.

    Google Scholar 

  2. D. Karunasagar, J. Arunachalam, and S. Gangadharan, J. Anal. At. Spectrom., 1998, 13, 679.

    Article  CAS  Google Scholar 

  3. E. Saouter, Anal. Chem., 1994, 66, 2031.

    Article  CAS  Google Scholar 

  4. I. Gelaude, R. Dams, M. Resano, F, Vanhaecke, and L. Moens, Anal. Chem., 2002, 74, 3833.

    Article  CAS  Google Scholar 

  5. S. Rapsomankis and P. Craig, Anal. Chim. Acta, 1991, 248, 563.

    Article  Google Scholar 

  6. R. Fischer, S. Rapsomankis, and M. O. Andreae, Anal. Chem., 1993, 65, 763.

    Article  CAS  Google Scholar 

  7. C. M. Tseng, A. De Diego, F. M. Martin, D. Amouroux, and O. F. X. Donard, J. Anal. At. Spectrom., 1997, 12, 743.

    Article  CAS  Google Scholar 

  8. M. Navarro and M. C. Lopez, Anal. Chim. Acta, 1992, 257, 155.

    Article  CAS  Google Scholar 

  9. G. Schnitzer, A. Soubelet, and C. Chafey, Microchim. Acta, 1995, 119, 199.

    Article  CAS  Google Scholar 

  10. J. L. Manzoori, M. H. Sorouraddin, and A. M. H. Shabani, J. Anal. At. Spectrom., 1998, 10, 1017.

    Google Scholar 

  11. G. Tao, S. N. Wille, and R. E. Sturgeon, J. Anal. At. Spectrom., 1999, 14, 1929.

    Article  CAS  Google Scholar 

  12. A. Shafawi, L. Ebdon, M. Foulkes, P. Stockwell, and W. Corns, Analyst [London], 1999, 124, 185.

    Google Scholar 

  13. P. Ugo, L. Moretto, P. Bertochello, and J. Wang, Electroanalysis, 1998, 10, 1017.

    Article  CAS  Google Scholar 

  14. W. Huang and S. Zhang, Anal. Sci., 2002, 18, 187.

    Article  Google Scholar 

  15. P. R. Devi, T. Gangaiah, and G. R. K. Naidu, Anal. Chim. Acta, 1991, 12, 533.

    Article  Google Scholar 

  16. M. Caballero, R. Cela, and J. A. Peres-Bustamante, Talanta, 1990, 37, 275.

    Article  CAS  Google Scholar 

  17. Z. Marczenko, Microchim. Acta, 1977, II, 651.

    Article  Google Scholar 

  18. Z. Marczenko, CRC Crit. Rev. Anal. Chem., 1981, 11, 195.

    Article  CAS  Google Scholar 

  19. Z. Marczenko and M. Jaroz, Analyst [London], 1981, 106, 751.

    Google Scholar 

  20. K. Kalinowski and Z. Marczenko, Microchim. Acta, 1985, I, 167.

    Article  Google Scholar 

  21. Z. Marczenko and K. Jankowski, Anal. Chim. Acta, 1985, 176, 185.

    Article  CAS  Google Scholar 

  22. K. Kalinowski and Z. Marczenko, Anal. Chim. Acta, 1986, 186, 331.

    Article  CAS  Google Scholar 

  23. L. Mathew, M. L. P. Reddy, T. R. Ramamohan, T. Prasad, C. S. P. Lyer, and A. D. Damodaran, Microchim. Acta, 1997, 127, 125.

    Article  CAS  Google Scholar 

  24. V. Bhagavathy, T. Prasada Rao, and A. D. Damodaran, Anal. Chim. Acta, 1993, 280, 169.

    Article  CAS  Google Scholar 

  25. M. Chamsaz, M. H. Arbab-Zavar, and M. S. Hosseini, Anal. Lett., 2000, 33, 1625.

    Article  CAS  Google Scholar 

  26. M. Chamsaz, M. S. Hosseini, and M. H. Arbab-Zavar, Chem. Anal. [Warsaw], 2004, 49, 241.

    Google Scholar 

  27. M. S. Hosseini and Y. Nasseri, Anal. Sci., 2003, 19, 1505.

    Article  CAS  Google Scholar 

  28. A. A. Schilt, “Analytical Application of 1,10-Phenanthroline and Related Compounds”, 1st ed., 1969, Pergamon Perss, London.

    Google Scholar 

  29. J. A. Dean, “Lang’s Handbook of Chemistry”, 15th ed., 1999, McGraw-Hill, New York.

    Google Scholar 

  30. I. Gelaude, R. Dams, M. Resano, F, Vanhaecke, and L. Moens, Anal. Chem., 2002, 74, 3833.

    Article  CAS  Google Scholar 

  31. F. W. Fifield and P. J. Haines, “Environmental Analytical Chemistry”, 2nd ed., 2000, Blackwell Science, London.

    Google Scholar 

  32. Standard Methods for Examination of Water and Wastewater”, 15th ed., 1980, APHA-AWWA.WPCF, Washington, D.C.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saeid Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, M.S., Hashemi-Moghaddam, H. Flotation–Spectrophotometric Determination of Mercury in Water Samples Using Iodide and Ferroin. ANAL. SCI. 20, 1449–1452 (2004). https://doi.org/10.2116/analsci.20.1449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20.1449

Navigation