Skip to main content
Log in

Recent Progresses in Nanometer Scale Analysis of Buried Layers and Interfaces in Thin Films by X-rays and Neutrons

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In the early 1960s, scientists achieved the breakthroughs in the fields of solid surfaces and artificial layered structures. The advancement of surface science has been supported by the advent of ultra-high vacuum technologies, newly discovered and established scanning probe microscopy with atomic resolution, as well as some other advanced surface-sensitive spectroscopy and microscopy. On the other hand, it has been well recognized that a number of functions are related to the structures of the interfaces, which are the thin planes connecting different materials, most likely by layering thin films. Despite the scientific significance, so far, research on such buried layers and interfaces has been limited, because the probing depth of almost all existing sophisticated analytical methods is limited to the top surface. The present article describes the recent progress in the nanometer scale analysis of buried layers and interfaces, particularly by using X-rays and neutrons. The methods are essentially promising to non-destructively probe such buried structures in thin films. The latest scientific research has been reviewed, and includes applications to bio-chemical, organic, electronic, magnetic, spintronic, self-organizing and complicated systems as well as buried liquid-liquid and solid-liquid interfaces. Some emerging analytical techniques and instruments, which provide new attractive features such as imaging and real time analysis, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications”, ed. G. Friedbacher and H. Bubert, 2nd ed., 2011, John Wiley & Sons.

    Google Scholar 

  2. T. Imae, “Nanolayer Research: Methodology and Technology for Green Chemistry”, 2017, Elsevier.

    Google Scholar 

  3. J. González-Cobos and A. de Lucas-Consuegra, Catalysts, 2016, 6, 15.

    Article  Google Scholar 

  4. Methods of Surface Analysis”, ed. A. W. Czanderna, 2012, Elsevier.

    Google Scholar 

  5. S. Hofmann, “Auger- and X-ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide”, 2012, Springer.

    Google Scholar 

  6. H. Arai and T. Fujikawa, Anal. Sci., 2010, 26, 147.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Yano, M. Naskano, and D. Takakura, Anal. Sci., 1997, 13(Supplement), 355.

    Article  CAS  Google Scholar 

  8. J. Kawai, Anal. Sci., 1997, 13, 797.

    Article  CAS  Google Scholar 

  9. J. Pavluch, L. Zommer, K. Masek, T. Skála, F. Sutara, V. Nehasil, I. Pís, and Y. Polyak, Anal. Sci., 2010, 26, 209.

    Article  CAS  PubMed  Google Scholar 

  10. K. Kimura, K. Nakajima, T. Conard, W. Vandervorst, A. Bergmaier, and G. Dollinger, Anal. Sci., 2010, 26, 223.

    Article  CAS  PubMed  Google Scholar 

  11. J. Rubio-Zuazo and G. Castro, Surf. Interface Anal., 2008, 40, 1438.

    Article  CAS  Google Scholar 

  12. K. Rokosz and T. Hryniewicz, World Scientific News, 2016, 37, 232.

    CAS  Google Scholar 

  13. M. Brown, M. Faubel, and B. Winter, Annu. Rep. Prog. Chem. Sect. C, 2009, 105, 174.

    Article  CAS  Google Scholar 

  14. A. Jablonski, Anal. Sci., 2010, 26, 155.

    Article  CAS  PubMed  Google Scholar 

  15. C. S. Fadley, J. Electron Spectrosc. Relat. Phenom., 2010, 178-179, 2.

    Article  Google Scholar 

  16. Y. Fukuda, Anal. Sci., 2010, 26, 187.

    Article  CAS  PubMed  Google Scholar 

  17. M. Kobata, I. Pis, H. Iwai, H. Yamazui, H. Takahashi, M. Suzuki, H. Matsuda, H. Daimon, and K. Kobayashi, Anal. Sci., 2010, 26, 227.

    Article  CAS  PubMed  Google Scholar 

  18. A. Ueda, D. Kato, N. Sekioka, S. Hirono, and O. Niwa, Anal. Sci., 2009, 25, 645.

    Article  CAS  PubMed  Google Scholar 

  19. R. Xie, Y. Song, L. Wan, H. Yuan, P. Li, X. Xiao, L. Liu, S. Ye, S. Lei, and L. Wang, Anal. Sci., 2011, 27, 129.

    Article  CAS  PubMed  Google Scholar 

  20. Z. Wang, M. Saito, S. Tsukimoto, and Y. Ikuhara, Journal of the Ceramic Society of Japan, 2011, 119, 783.

    Article  CAS  Google Scholar 

  21. D. Homeniuk, M. Malac, and M. Hayashida, Ultramicroscopy, 2018, 194, 64.

    Article  CAS  PubMed  Google Scholar 

  22. D. P. Woodruff, “Low Energy Electron Diffraction”, in “Reference Module in Materials Science and Materials Engineering”, 2016, Elsevier.

    Google Scholar 

  23. M. VanHove, W. Weinberg, and C. Chan, “Low-Energy Electron Diffraction: Experiment, Theory and Surface Structure”, 2012, Springer.

    Google Scholar 

  24. S. Ninomiya, K. Ichiki, H. Yamada, Y. Nakata, T. Seki, T. Aoki, and J. Matsuo, Rapid Commun. Mass Spectrom., 2009, 23, 1601.

    Article  CAS  PubMed  Google Scholar 

  25. S. Ninomiya, K. Ichiki, H. Yamada, Y. Nakata, T. Seki, T. Aoki, and J. Matsuo, Rapid Commun. Mass Spectrom., 2009, 23, 3264.

    Article  CAS  PubMed  Google Scholar 

  26. R. Klockenkaemper and A. von Bohlen, “Total-Reflection X-Ray Fluorescence Analysis and Related Methods”, 2015, Wiley.

    Google Scholar 

  27. J. Willis, K. Turner, and G. Pritchard, “XRF in the Workplace: A Guide to Practical XRF Spectrometry”, 2011, PANalytical, Australia.

    Google Scholar 

  28. Introduction to Reference—Free X-ray Fluorescence Analysis” (in Japanese), ed. K. Sakurai, 2019, Kodansha, Japan.

    Google Scholar 

  29. J. Als-Nielsen and D. McMorrow, “Elements of Modern X-ray Physics”, 2nd ed., 2011, Wiley.

    Book  Google Scholar 

  30. X-ray and Neutron Reflectivity—Principles and Applications”, ed. J. Daillant and A. Gibaud, 2nd ed., 2009, Springer.

    Google Scholar 

  31. Introduction to X-Ray Reflectivity” (in Japanese), ed. K. Sakurai, 2018, Kodansha, Japan.

    Google Scholar 

  32. M. Tolan, “X-Ray Scattering from Soft-Matter Thin Films”, 1999, Springer.

    Book  Google Scholar 

  33. U. Pietsch, V. Holy, and T. Baumbach, “High-Resolution X-Ray Scattering from Thin Films to Lateral Nanostructures”, 2nd ed., 2004, Springer.

    Book  Google Scholar 

  34. K. Stoev and K. Sakurai, Rigaku Journal, 1997, 14, 22.

    CAS  Google Scholar 

  35. K. Stoev and K. Sakurai, Spectrochim. Acta, Part B, 1999, 54, 41.

    Article  Google Scholar 

  36. C. J. Schaffer, C. Wang, A. Hexemer, and P. Müller-Buschbaum, Polymer, 2016, 105, 357.

    Article  CAS  Google Scholar 

  37. J. Rubio-Zuazo and G. R. Castro, J. Electron Spectrosc. Relat. Phenom., 2013, 190, 205.

    Article  CAS  Google Scholar 

  38. A. E. F. de Jong, V. Vonk, V. Honkimäki, B. Gorges, H. Vitoux, and E. Vlieg, J. Cryst. Growth, 2015, 420, 84.

    Article  Google Scholar 

  39. S. Zheng and Y. Gohshi, Anal. Sci., 1997, 13, 997.

    Article  CAS  Google Scholar 

  40. H. Nagatani, H. Tanida, I. Watanabe, and T. Sagara, Anal. Sci., 2009, 25, 475.

    Article  CAS  PubMed  Google Scholar 

  41. T. Osawa, Anal. Sci., 2010, 26, 281.

    Article  CAS  PubMed  Google Scholar 

  42. W. Li, G. Pan, M. Zhang, D. Zhao, Y. Yang, H. Chen, and G. He, J. Colloid Interface Sci., 2008, 319, 385.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Wang, G. Morin, G. Ona-Nguema, N. Menguy, F. Juillot, E. Aubry, and G. E. Brown Jr, Geochim. Cosmochim. Acta, 2008, 72, 2573.

    Article  CAS  Google Scholar 

  44. M. Schlegel and A. Manceau, Geochim. Cosmochim. Acta, 2013, 113, 113.

    Article  CAS  Google Scholar 

  45. Y. Zenitani, F. Sakamoto, and K. Wagatsuma, Anal. Sci., 2009, 25, 323.

    Article  CAS  PubMed  Google Scholar 

  46. S. Hofmann, Appl. Surf. Sci., 2005, 241, 113.

    Article  CAS  Google Scholar 

  47. Y. Peng, Y. Liu, Q. Wu, and P. Sun, Anal. Sci., 2017, 33, 1071.

    Article  CAS  PubMed  Google Scholar 

  48. L. C. Mecker-Pogue and J. F. Kauffman, J. Pharm. Biomed. Anal., 2015, 105, 17.

    Article  CAS  PubMed  Google Scholar 

  49. A. M. Jubb, D. Verreault, R. Posner, L. J. Criscenti, L. E. Katz, and H. C. Allen, J. Colloid Interface Sci., 2013, 400, 140.

    Article  CAS  PubMed  Google Scholar 

  50. I. N. Mysiura, I. O. Girka, and V. T. Gritsyna, Funct. Mater., 2012, 19, 251.

    CAS  Google Scholar 

  51. G. Socol, E. Axente, M. Oane, L. Voicu, A. Petris, V. Vlad, I. N. Mihailescu, N. Mirchin, R. Margolin, D. Naot, and A. Peled, Appl. Surf. Sci., 2007, 253, 6535.

    Article  CAS  Google Scholar 

  52. D. I. Bilenko, A. A. Sagaidachnyi, V. V. Galushka, and V. P. Polyanskaya, Tech. Phys., 2010, 55, 1478.

    Article  CAS  Google Scholar 

  53. A.Y. Polyakov, A. V. Nesterov, A. E. Goldt, V. Zubyuk, T. Dolgova, L. Yadgarov, B. Visic, A. A. Fedyanin, R. Tenne, and E. A. Goodilin, J. Phys.: Conf. Ser., 2015, 643, 012046.

    Google Scholar 

  54. D. Langhe and M. Ponting, in “Manufacturing and Novel Applications of Multilayer Polymer Films”, 2016, Chap. 4, Elsevier, 117–140.

    Book  Google Scholar 

  55. F. Hansteen, O. Hunderi, T. H. Johansen, A. I. Kirilyuk, and T. H. M. Rasing, Trans. Magn. Soc. Jpn., 2004, 4, 318.

    Article  CAS  Google Scholar 

  56. G. A. Somorjai and J. Y. Park, Surf. Sci., 2009, 603, 1293.

    Article  CAS  Google Scholar 

  57. Y. Fang, B. Li, J. Yu, J. Zhou, X. Xu, W. Shao, and X. Lu, Surf. Sci., 2013, 615, 26.

    Article  CAS  Google Scholar 

  58. N. W. Ulrich, J. S. Andre, and Z. Chen, “Sum Frequency Generation Spectroscopy”, in Encyclopedia of Analytical Science, ed. P. Worsfold, C. Poole, A. Townshend, and M. Miró, 3rd ed., 2019, Academic Press, 393–399.

    Google Scholar 

  59. J. H. Lakey, J. R. Soc. Interface, 2009, 6, S567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. M. R. Fitzsimmons and I. K. Schuller, J. Magn. Magn. Mater., 2014, 350, 199.

    Article  CAS  Google Scholar 

  61. M. Demkowicz and J. Majewski, Metals, 2016, 6, 20.

    Article  Google Scholar 

  62. S. Gayen, M. K. Sanyal, and M. Wolff, in “Magnetic Characterization Techniques for Nanomaterials”, ed. C. S. S. R. Kumar, 2017, Chap. 10, Springer, 339–373.

  63. F. Cousin and A. Menelle, EPJ Web of Conferences, 2015, 104, 01005.

  64. Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials”, ed. H. Fritzsche, J. Huot, and D. Fruchart, 2016, Springer.

    Google Scholar 

  65. F. A. Adlmann, J. Herbel, A. Korolkovas, A. Bliersbach, B. Toperverg, W. Van Herck, G. K. Pálsson, B. Kitchen, and M. Wolff, J. Phys.: Condens. Matter, 2018, 30, 165901.

    PubMed  Google Scholar 

  66. P. Müller-Buschbaum, Polym. J., 2013, 45, 34.

    Article  Google Scholar 

  67. S. Nouhi, M. Hellsing, V. Kapaklis, and A. Rennie, J. Appl. Cryst., 2017, 50, 1066.

    Article  CAS  Google Scholar 

  68. J. Penfold, Curr. Sci., 2000, 78, 1458.

    CAS  Google Scholar 

  69. X-ray and Neutron Techniques for Nanomaterials Characterization”, ed. C. S. S. R. Kumar, 2016, Springer.

    Google Scholar 

  70. I. Anderson {etet al.}, “X-rays and Neutrons: Essential Tools for Nanoscience Research”, DOE Report, 2005.

    Google Scholar 

  71. M. W. A. Skoda, Curr. Opin. Coll. Int. Sci., 2019, 42, 41.

    Article  CAS  Google Scholar 

  72. T. Hohage, K. Giewekemeyer, and T. Salditt, Phys. Rev. E, 2008, 77, 051604.

    Article  Google Scholar 

  73. E. Schneck and B. Deme, Curr. Opin. Coll. Int. Sci., 2015, 20, 244.

    Article  CAS  Google Scholar 

  74. A. Neuhold, H. Brandner, S. J. Ausserlechner, S. Lorbek, M. Neuschitzer, E. Zojer, C. Teichert, and R. Resel, Org. Electron., 2013, 14, 479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. J. Daillant, Curr. Opin. Coll. Int. Sci., 2009, 14, 396.

    Article  CAS  Google Scholar 

  76. P. Müller-Buschbaum, “A Basic Introduction to Grazing Incidence Small-angle X-ray Scattering”, in “Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences”, ed. T. A. Ezquerra, M. C. Garcia-Gutierrez, A. Nogales, and M. Gomez, 2009, Springer, 61–89.

  77. G. Renaud, R. Lazzari, and F. Leroy, Surf. Sci. Rep., 2009, 64, 255.

    Article  CAS  Google Scholar 

  78. S. Jaksch, T. Gutberlet, and P. Müller-Buschbaum, Curr. Opin. Coll. Int. Sci., 2019, 42, 73.

    Article  CAS  Google Scholar 

  79. J. Zegenhagen and I. A. Vartanyants, “The X-ray Standing Wave Technique: Principles and Applications”, 2013, World Scientific Publishing Co.

    Book  Google Scholar 

  80. L. Cristofolini, Curr. Opin. Coll. Int. Sci., 2014, 19, 228.

    Article  CAS  Google Scholar 

  81. S. Dourdain, J. Bardeau, and M. Colas, Appl. Phys. Lett., 2005, 86, 113108.

    Article  Google Scholar 

  82. E. Arac, D. M. Burn, D. S. Eastwood, T. P. A. Hase, and D. Atkinson, J. Appi. Phys., 2012, 111, 044324.

    Article  Google Scholar 

  83. D. F. Sanchez, F. Rodrigues, F. P. Luce, Z. E. Fabrim, G. de M. Azevedo, G. Kellermann, D. L. Baptista, P. L. Grande, and P. F. P. Fichtner, Appi. Surf. Sci., 2014, 321, 80.

    Article  CAS  Google Scholar 

  84. J. Trzmiel, A. Sieradzki, A. Jurlewicz, and Z. T. Kuźnicki, Curr. Appi. Phys., 2014, 14, 991.

    Article  Google Scholar 

  85. M. El Kousseifi, F. Panciera, K. Hoummada, M. Descoins, T. Baron, and D. Mangelinck, Microelectrn. Eng., 2014, 120, 47.

    Article  Google Scholar 

  86. T. Kawagoe, T. Miyamachi, M. Someta, T. Kudo, and S. Suga, Surf. Sci., 2008, 602, L15.

    Article  CAS  Google Scholar 

  87. F. Yokaichiya, C. Schmidt, J. Storsberg, M. Kumpugdee-Vollrath, D. Ribeiro de Araujo, B. Kent, D. Clemens, F. Wingert, and M. K. K. D. Franco, Phys. B, 2018, 551, 191.

    Article  CAS  Google Scholar 

  88. S. V. Snegir, O. P. Artykulnyi, V. I. Petrenko, M. Krumova, V.Y. Kutsenko, M. V. Avdeev, A. Kasatkin, and L. A. Bulavin, Chem. Phys. Lett., 2018, 706, 601.

    Article  CAS  Google Scholar 

  89. X. Xia, J. Yin, B. Su, D. Hui, R. Yu, and X. Liu, Composites Part B: Engineering, 2017, 120, 92.

    Article  CAS  Google Scholar 

  90. K. Stoev and K. Sakurai, IOP Conf. Ser.: Mater. Sci. Eng., 2011, 24, 012014.

    Article  Google Scholar 

  91. K. Stoev and K. Sakurai, Powder Diffr., 2013, 28, 105.

    Article  CAS  Google Scholar 

  92. J. Früh, A. Rühm, H. Möhwald, R. Krastev, and R. Köhler, Phys. B, 2015, 457, 202.

    Article  Google Scholar 

  93. M. Delcea and C. A. Helm, Langmuir, 2019, 35, 8519.

    Article  CAS  PubMed  Google Scholar 

  94. P. Pershan and M. Schlossman, “Liquid Surfaces and Interfaces: Synchrotron X-ray Methods”, 2012, Cambridge University Press.

    Book  Google Scholar 

  95. M. K. Bera, W. Bu, and A. Uysal, in “Physical Chemistry of Gas-Liquid Interfaces”, ed. J. A. Faust and J. E. House, 2018, Chap. 7, Elsevier, 167–194.

  96. E. Perret, K. Nygård, D. K. Satapathy, T. E. Balmer, O. Bunk, M. Heuberger, and J. F. van der Veen, J. Synchrotron Rad., 2010, 17, 465.

    Article  CAS  Google Scholar 

  97. E. Perret, K. Nygård, D. K. Satapathy, T. E. Balmer, O. Bunk, M. Heuberger, and J. F. van der Veen, Europhys. Lett., 2009, 88, 36004.

    Article  Google Scholar 

  98. S. Erokhina, T. Berzina, L. Cristofolini, V. Erokhin, C. Folli, O. Konovalov, I. Marino, and M. P. Fontana, Langmuir, 2008, 24, 12094.

    Article  Google Scholar 

  99. F. J. Wirkert, M. Paulus, J. Nase, J. Möller, S. Kujawski, C. Sternemann, and M. Tolan, J. Synchrotron Rad., 2014, 21, 76.

    Article  CAS  Google Scholar 

  100. Z. Brkljača, M. Klimczak, Z. Miličević, M. Weisser, N. Taccardi, P. Wasserscheid, D. M. Smith, A. Magerl, and A. Smith, J. Phys. Chem. Lett., 2015, 6, 549.

    Article  PubMed  Google Scholar 

  101. Y. Jeon, J. Sung, W. Bu, D. Vaknin, Y. Ouchi, and D. Kim, J. Phys. Chem. C, 2008, 112, 19649.

    Article  CAS  Google Scholar 

  102. G. Bhattacharya, R. P. Giri, H. Saxena, V. V. Agrawal, A. Gupta, M. K. Mukhopadhyay, and S. K. Ghosh, Langmuir, 2017, 33, 1295.

    Article  CAS  PubMed  Google Scholar 

  103. N. Nishi, Y. Yasui, T. Uruga, H. Tanida, T. Yamada, S. Nakayama, H. Matsuoka, and T. Kakiuchi, J. Chem. Phys., 2010, 132, 164705.

    Article  PubMed  Google Scholar 

  104. Y. Lauw, M. D. Horne, T. Rodopoulos, N. A. S. Webster, B. Minofar, and A. Nelson, Phys. Chem. Chem. Phys., 2009, 11, 11507.

    Article  CAS  PubMed  Google Scholar 

  105. N. Nishi, T. Uruga, and H. Tanida, J. Electroanal. Chem., 2015, 759, 129.

    Article  CAS  Google Scholar 

  106. M. Mezger, J. Am. Chem. Soc., 2010, 132, 6735.

    Article  CAS  PubMed  Google Scholar 

  107. M. Fukuto, O. Gang, K. J. Alvine, B. M. Ocko, and P. S. Pershan, Phys. Rev. E., 2008, 77, 031607.

    Article  Google Scholar 

  108. P. S. Pershan, S. E. Stoltz, S. Mechler, O. G. Shpyrko, A. Y. Grigoriev, V. S. K. Balagurusamy, B. H. Lin, and M. Meron, Phys. Rev. B, 2009, 80, 125414.

    Article  Google Scholar 

  109. P. S. Pershan, S. E. Stoltz, Oleg G. Shpyrko, M. Deutsch, V. S. K. Balagurusamy, M. Meron, B. Lin, and R. Streitel, Phys. Rev. B, 2009, 79, 115417.

    Article  Google Scholar 

  110. S. Chattopadhyay, A. Uysal, B. Stripe, S. Ehrlich, E. A. Karapetrova, and P. Dutta, Phys. Rev. B, 2010, 81, 184206.

    Article  Google Scholar 

  111. Y. Dai, B. Lin, M. Meron, K. Kim, B. Leahy, and O. G. Shpyrko, J. Appi. Phys., 2011, 110, 102213.

    Article  Google Scholar 

  112. C. Stefaniu and G. Brezesinski, Curr. Opin. Coll. Int. Sci., 2014, 19, 216.

    Article  CAS  Google Scholar 

  113. Y. Yano and H. Yamada, Anal. Sci., 2008, 24, 1269.

    Article  CAS  PubMed  Google Scholar 

  114. A. Foelske and M. Sauer, Electrochim. Acta, 2019, 319, 456.

    Article  CAS  Google Scholar 

  115. O. Höfft, Anal. Sci., 2008, 24, 1273.

    Article  PubMed  Google Scholar 

  116. T. Takei and Y. Sugitani, Anal. Sci., 2010, 26, 337.

    Article  CAS  PubMed  Google Scholar 

  117. Z. Chen, Progress in Polymer Science, 2010, 35, 1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. R. J. L. Welbourn and S. M. Clarke, Curr. Opin. Coll. Inter. Sci., 2019, 42, 87.

    Article  CAS  Google Scholar 

  119. R. A. Campbell, Curr. Opin. Coll. Int. Sci., 2018, 37, 49.

    Article  CAS  Google Scholar 

  120. J. Bowers, A. Zarbakhsh, J. R. P. Webster, L. R. Hutchings, and R. W. Richards, Langmuir, 2001, 171, 140.

    Article  Google Scholar 

  121. W. Kalisvaart, H. Fritzsche, and W. Mérida, Langmuir, 2015, 31, 5416.

    Article  CAS  PubMed  Google Scholar 

  122. L. He, H. L. Smith, J. Majewski, C. H. Fujimoto, C. J. Cornelius, and D. Perahia, Macromolecules, 2009, 42, 5745.

    Article  CAS  Google Scholar 

  123. R. A. Campbell, Y. Saaka, Y. Shao, Y. Gerelli, R. Cubitt, E. Nazaruk, D. Matyszewska, and M. J. Lawrence, J. Colloid Interface Sci., 2018, 531, 98.

    Article  CAS  PubMed  Google Scholar 

  124. R. J. L. Welbourn, F. Bartholomew, P. Gutfreund, and S. M. Clarke, Langmuir, 2017, 33, 5982.

    Article  CAS  PubMed  Google Scholar 

  125. U. N. Shrivastava, H. Fritzsche, and K. Karan, Macromolecules, 2018, 51, 9839.

    Article  CAS  Google Scholar 

  126. J. Koo, S. Park, S. Satija, A. Tikhonov, J. C. Sokolov, M. H. Rafailovich, and T. Koga J. Colloid Interface Sci., 2008, 318, 103.

    Article  CAS  PubMed  Google Scholar 

  127. F. Evers, K. Shokuie, M. Paulus, C. Sternemann, C. Czeslik, and M. Tolan, Langmuir, 2008, 24, 10216.

    Article  CAS  PubMed  Google Scholar 

  128. A. Richter and I. Kuzmenko, Langmuir, 2013, 29, 5167.

    Article  CAS  PubMed  Google Scholar 

  129. H. Hähl, F. Evers, S. Grandthyll, M. Paulus, C. Sternemann, P. Loskill, M. Lessel, A. K. Hüsecken, T. Brenner, M. Tolan, and K. Jacobs, Langmuir, 2012, 28, 7747.

    Article  PubMed  Google Scholar 

  130. H. Y. Jing, D. H. Hong, B. D. Kwak, D. J. Choi, K. Shin, C.-J. Yu, J. W. Kim, D. Y. Noh, and Y. S. Seo, Langmuir, 2009, 25, 4198.

    Article  CAS  PubMed  Google Scholar 

  131. K. M. McElhinny, P. Huang, Y. Joo, C. Kanimozhi, A. Lakkham, K. Sakurai, P. G. Evans, and P. Gopalan, Langmuir, 2017, 33, 2157.

    Article  CAS  PubMed  Google Scholar 

  132. V. Ann Innis-Samson and K. Sakurai, X-ray Spectrometry, 2009, 38, 376.

    Article  Google Scholar 

  133. V. Ann Innis-Samson and K. Sakurai, Trans. Mater. Res. Soc. Jpn., 2009, 34, 639.

    Article  Google Scholar 

  134. V. Ann Innis-Samson and K. Sakurai, J. Phys.: Condens. Matter, 2011, 23, 435010.

    Google Scholar 

  135. V. Ann Innis-Samson and K. Sakurai, Soft Matter, 2012, 8, 7351.

    Article  Google Scholar 

  136. C. J. Schaffer, C. Wang, A. Hexemer, and P. Müller-Buschbaum, Polymer, 2016, 105, 357.

    Article  CAS  Google Scholar 

  137. P. Taheri, H. Terryn, and J. M. C. Mol, Progress in Organic Coatings, 2015, 89, 323.

    Article  CAS  Google Scholar 

  138. L. Shen, N. W. Ulrich, C. M. Mello, and Z. Chen, Chem. Phys. Lett., 2015, 619, 247.

    Article  CAS  Google Scholar 

  139. A. D. Curtis, A. R. Calchera, M. C. Asplund, and J. E. Patterson, Vibr. Spectrosc., 2013, 68, 71.

    Article  CAS  Google Scholar 

  140. J. H. Lakey, Curr. Opin. Coll. Int. Sci., 2019, 42, 33.

    Article  CAS  Google Scholar 

  141. M. Sferrazza, R. A. L. Jones, J. Penfold, D. B. Bucknall, and J. R. P. Webster, J. Mater. Chem., 2000, 10, 127.

    Article  CAS  Google Scholar 

  142. J. Generosi, C. Castellano, D. Pozzi, and A. C. Castellano, J. Appl. Phys., 2004, 96, 6839.

    Article  CAS  Google Scholar 

  143. N. Pawlowska, H. Fritzsche, C. Blaszykowski, S. Sheikh, M. Vezvaie, and M. Thompson, Langmuir, 2014, 30, 1199.

    Article  CAS  PubMed  Google Scholar 

  144. A. Urbina, J. Abad, A. J. Fernández-Romero, J. S. Lacasa, J. Colchero, J. F. González-Martínez, J. Rubio-Zuazo, G. R. Castro, and P. Gutfreund, Solar Energy Materials and Solar Cells, 2019, 191, 62.

    Article  CAS  Google Scholar 

  145. Metrology and Diagnostic Techniques for Nanoelectronics”, ed. Z. Ma and D. G. Seiler, 2017, Pan Stanford Publishing Pte. Ltd., Penthouse Level, Singapore.

    Google Scholar 

  146. Y. Song, Y. Huang, and Y. Lin, Proceeding of 2016 China Semiconductor Technology International Conference (CSTIC), 13-14 March 2016, Shanghai, China.

  147. N. G. Orji, M. Badaroglu, B. M. Barnes, C. Beitia, B. D. Bunday, U. Celano, R. J. Kline, M. Neisser, Y. Obeng, and A. E. Vladar, Nat. Electron., 2018, 1, 532.

    Article  Google Scholar 

  148. M. A. Shcherbina, S. N. Chvalun, S. A. Ponomarenko, and M. V. Kovalchuk, Russian Chem. Rev., 2014, 83, 1091.

    Article  CAS  Google Scholar 

  149. D. Biswas, S. Faruque, A. Sinha, A. Upadhyay, and S. Chakraborty, Appl. Phys. Lett., 2014, 105, 113511.

    Article  Google Scholar 

  150. G. Ju, S. Fuchi, M. Tabuchi, H. Amano, and Y. Takeda, J. Cryst. Growth, 2014, 407, 68.

    Article  CAS  Google Scholar 

  151. J. Wu, H. Lin, B. Su, Y. Chen, S. Chu, S. Liu, C. Chang, and C. Wu, Ceramics International, 2014, 40, 2419.

    Article  CAS  Google Scholar 

  152. A. Khassanov, H. Steinrück, T. Schmaltz, A. Magerl, and M. Halik, Acc. Chem. Res., 2015, 48, 1901.

    Article  CAS  PubMed  Google Scholar 

  153. P. Maheshwari, D. Bhattacharya, S. K. Sharma, S. Mukherjee, S. Samanta, S. Basu, D. K. Aswal, and P. K. Pujari, Solid State Commun., 2014, 200, 22.

    Article  CAS  Google Scholar 

  154. C. R. McNeill and H. Ade, J. Mater. Chem. C, 2013, 1, 187.

    Article  CAS  Google Scholar 

  155. R. Capelli, E. Da Como, G. Kociok-Köhn, C. Fontanesi, A. Verna, and L. Pasquali, J. Chem. Phys., 2019, 150, 094707.

    Article  CAS  PubMed  Google Scholar 

  156. T. Hosokai, A. Gerlach, A. Hinderhofer, C. Frank, G. Ligorio, U. Heinemeyer, A. Vorobiev, and F. Schreiber, Appl. Phys. Lett., 2010, 97, 063301.

    Article  Google Scholar 

  157. S. Kowarik, A. Gerlach, S. Sellner, L. Cavalcanti, and F. Schreiber, Adv. Eng. Mater., 2009, 11, 291.

    Article  CAS  Google Scholar 

  158. S. Kowarik, A. Hinderhofer, C. Wang, C. Weber, A. Gerlach, A. Hexemer, S. R. Leone, and F. Schreiber, AIP Adv., 2015, 5, 117241.

    Article  Google Scholar 

  159. D. Carbone, A. Biermanns, B. Ziberi, F. Frost, O. Plantevin, U. Pietsch, and T. H. Metzger, J. Phys.: Condens. Matter, 2009, 21, 224007.

    CAS  PubMed  Google Scholar 

  160. S. H. Nowak, D. Banaś, W. Blchucki, W. Cao, J.-C. Dousse, P. Hönicke, J. Hoszowska, Ł. Jabłoński, Y. Kayser, A. Kubala-Kukuś, M. Pajek, F. Reinhardt, A. V. Savu, and J. Szlachetko, Spectrochim. Acta, Part B, 2014, 98, 65.

    Article  CAS  Google Scholar 

  161. D. Ingerle, F. Meirer, G. Pepponi, E. Demenev, D. Giubertoni, P. Wobrauschek, and C. Streli, Spectrochim. Acta, Part B, 2014, 99, 121.

    Article  CAS  Google Scholar 

  162. D. Ingerle, M. Schiebl, C. Streli, and P. Wobrauschek, Review of Scientific Instruments, 2014, 85, 083110.

    Article  CAS  PubMed  Google Scholar 

  163. D. Ingerle, G. Pepponi, F. Meirer, P. Wobrauschek, and C. Streli, Spectrochim. Acta, Part B, 2016, 118, 20.

    Article  CAS  Google Scholar 

  164. H. Rotella, B. Caby, Y. Ménesguen, Y. Mazel, A. Valla, D. Ingerle, B. Detlefs, M.-C. Lépy, A. Novikova, G. Rodriguez, C. Streli, and E. Nolot, Spectrochim. Acta, Part B, 2017, 135, 22.

    Article  CAS  Google Scholar 

  165. S. Singh and S. Basu, AIP Conference Proceedings, 2016, 1731, 080007.

  166. X. Luo, L. T. Tseng, W. T. Lee, T. T. Tan, N. N. Bao, R. Liu, J. Ding, S. Li, V. Lauter, and J. B. Yi, Sci. Rep., 2017, 7, 6341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. M. Pagels, F. Reinhardt, B. Pollakowski, M. Roczen, C. Becker, K. Lips, B. Rech, B. Kanngießer, and B. Beckhoff, Nucl. Instrum. Methods B, 2010, 268, 370.

    Article  CAS  Google Scholar 

  168. M. Sing, “Photoemission of Buried Metal Oxide Interfaces”, in “Metal Oxides, Metal Oxide-Based Thin Film Structures”, ed. N. Pryds and V. Esposito, 2018, Elsevier, 161–180.

    Chapter  Google Scholar 

  169. D. Eiteneer, G. K. Pálsson, S. Nemšák, A. X. Gray, A. M. Kaiser, J. Son, J. LeBeau, G. Conti, A. A. Greer, A. Keqi, A. Rattanachata, A. Y. Saw, A. Bostwick, E. Rotenberg, E. M. Gullikson, S. Ueda, K. Kobayashi, A. Janotti, C. G. Van de Walle, A. Blanca-Romero, R. Pentcheva, C. M. Schneider, S. Stemmer, and C. S. Fadley, J. Electron Spectrosc. Relat. Phenom., 2016, 211, 70.

    Article  CAS  Google Scholar 

  170. C. S. Fadley and S. Nemšák, J. Electron Spectrosc. Relat. Phenom., 2014, 195, 409.

    Article  CAS  Google Scholar 

  171. C. S. Fadley, J. Electron Spectrosc. Relat. Phenom., 2013, 190, 165.

    Article  CAS  Google Scholar 

  172. S. Acharya, O. Trejo, A. Dadlani, J. Torgersen, F. Berto, and F. Prinz, Theoretical and Applied Mechanics Letters, 2018, 8, 24.

    Article  Google Scholar 

  173. D. Wang and H. Nakashima, Solid-State Electronics, 2009, 53, 841.

    Article  CAS  Google Scholar 

  174. J. Rubio-Zuazo, E. Martinez, P. Batude, L. Clavelier, A. Chabli, and G. R. Castro, Appl. Surf. Sci., 2011, 257, 3007.

    Article  CAS  Google Scholar 

  175. A. Foelske and M. Sauer, Electrochim. Acta, 2019, 319, 456.

    Article  CAS  Google Scholar 

  176. I. N. Demchenko, Y. Melikhov, Y. Syryanyy, I. Zaytseva, P. Konstantynov, and M. Chernyshova, J. Electron Spectrosc. Relat. Phenom., 2018, 224, 17.

    Article  CAS  Google Scholar 

  177. G. V. Benemanskaya, V. P. Pronin, S. N. Timoshnev, and A. V. Nelyubov, Appl. Surf. Sci., 2017, 423, 1198.

    Article  CAS  Google Scholar 

  178. P. Maheshwari, P. K. Pujari, S. K. Sharma, K. Sudarshan, D. Dutta, S. Samanta, A. Singh, D. K. Aswal, R. Ajay Kumar, and I. Samajdar, Org. Electron., 2012, 13, 1409.

    Article  CAS  Google Scholar 

  179. P. Amitesh, “Low-angle Polarized Neutron and X-ray Scattering from Magnetic Nanolayers and Nanostructures”, 2017, Springer International Publishing.

    Google Scholar 

  180. A. X. Gray, J. Electron Spectrosc. Relat. Phenom., 2014, 195, 399.

    Article  CAS  Google Scholar 

  181. W. Tadano, M. Sawada, H. Namatame, and M. Taniguchi, J. Electron Spectrosc. Relat. Phenom., 2017, 220, 105.

    Article  CAS  Google Scholar 

  182. K. Zafar, P. Audehm, G. Schütz, E. Goering, M. Pathak, K. B. Chetry, P. R. LeClair, and A. Gupta, J. Electron Spectrosc. Relat. Phenom., 2013, 191, 1.

    Article  CAS  Google Scholar 

  183. D. Telesca, B. Sinkovic, S.-H. Yang, and S. S. P. Parkin, J. Electron Spectrosc. Relat. Phenom., 2012, 185, 133.

    Article  CAS  Google Scholar 

  184. M. Magnuson, J. Magn. Magn. Mater., 2017, 422, 362.

    Article  CAS  Google Scholar 

  185. K. Song, D. Kim, J. Kim, D. Lee, and J. Choi, Curr. Appl. Phys., 2018, 18, 1212.

    Article  Google Scholar 

  186. E. Longo, C. Wiemer, R. Cecchini, M. Longo, A. Lamperti, A. Khanas, A. Zenkevich, M. Fanciulli, and R. Mantovan, J. Magn. Magn. Mater., 2019, 474, 632.

    Article  CAS  Google Scholar 

  187. S. Singh, S. Basu, C. L. Prajapat, M. Gupta, A. K. Poswal, and D. Bhattacharya, Thin Solid Films, 2014, 550, 326.

    Article  CAS  Google Scholar 

  188. M. V. Avdeev, V. I. Petrenko, I. V. Gapon, L. A. Bulavin, A. A. Vorobiev, O. Soltwedel, M. Balasoiu, L. Vekas, V. Zavisova, and P. Kopcansky, Appl. Surf. Sci., 2015, 352, 49.

    Article  CAS  Google Scholar 

  189. S. V. Kozhevnikov, V. D. Zhaketov, T. Keller, Y. Khaydukov, F. Ott, C. Luo, K. Chen, and F. Radu, Nucl. Instrum. Methods A, 2019, 927, 87.

    Article  CAS  Google Scholar 

  190. M. Saoudi, H. Fritzsche, G. J. Nieuwenhuys, and M. B. S. Hesselberth, Phys. Rev. Lett., 2008, 100, 057204.

    Article  CAS  PubMed  Google Scholar 

  191. S. Singh and S. Basu, Curr. Appl. Phys., 2017, 17, 615.

    Article  Google Scholar 

  192. H. Fritzsche, M. Saoudi, Z. Yamani, W. J. L. Buyers, R. A. Cowley, and R. C. C. Ward, Phys. Rev. B, 2008, 77, 054423.

    Article  Google Scholar 

  193. Y. Wang, X. He, T. Mukherjee, M. R. Fitzsimmons, S. Sahoo, and C. Binek, J. Appl. Phys., 2011, 110, 103914.

    Article  Google Scholar 

  194. H. Fritzsche, J. M. van der Knaap, M. B. S. Hesselberth, and G. J. Nieuwenhuys, Phys. Rev. B, 2010, 81, 132402.

    Article  Google Scholar 

  195. M. O. Abutaleb, D. A. Pushin, M. G. Huber, C. F. Majkrzak, M. Arif, and D. G. Cory, Appl. Phys. Lett., 2012, 101, 182404.

    Article  Google Scholar 

  196. J. Major, A. Vorobiev, A. Rühm, R. Maier, M. Major, M. Mezger, M. Nülle, H. Dosch, G. P. Felcher, P. Falus, T. Keller, and R. Pynn, Rev. Sci. Instrum., 2009, 80, 123903.

    Article  PubMed  Google Scholar 

  197. M. Pannetiera, F. Ottb, C. Fermonb, and Y. Samson, Phys. B, 2003, 335, 54.

    Article  Google Scholar 

  198. O. Holderer, H. Frielinghaus, S. Wellert, F. Lipfert, M. Monkenbusch, R. von Klitzing, and D. Richter, J. Phys.: Conf. Ser., 2014, 528, 012025.

    CAS  Google Scholar 

  199. W. A. A. Macedo, J. Magn. Magn. Mater., 2014, 368, 402.

    Article  CAS  Google Scholar 

  200. Q. Wu and M. S. Altman, Ultramicroscopy, 2015, 159, 530.

    Article  CAS  PubMed  Google Scholar 

  201. D. F. Anagnostopoulos, E. Skuras, C. Stanley, G. L. Borchert, and R. Valicu, J. Alloys Compd., 2009, 483, 414.

    Article  CAS  Google Scholar 

  202. S. P. Singh, M. H. Modi, and P. Srivastava, Appl. Phys. Lett., 2010, 97, 151906.

    Article  Google Scholar 

  203. S. S. Lee, P. Fenter, C. G. Park, and K. L. Nagy, Langmuir, 2008, 24, 7817.

    Article  CAS  PubMed  Google Scholar 

  204. A. Brambilla, A. Picone, D. Giannotti, M. Riva, G. Bussetti, G. Berti, A. Calloni, M. Finazzi, F. Ciccacci, and L. Duò, Appl. Surf. Sci., 2016, 362, 374.

    Article  CAS  Google Scholar 

  205. W. Porzio, G. Scavia, L. Barba, G. Arrighetti, and S. Milita, Euro. Polym. J., 2011, 47, 273.

    Article  CAS  Google Scholar 

  206. B. Pal, S. Mukherjee, and D. D. Sarma, J. Electron Spectrosc. Relat. Phenom., 2015, 200, 332.

    Article  CAS  Google Scholar 

  207. E. Darlatt, C. H.-H. Traulsen, J. Poppenberg, S. Richter, J. Kühn, C. A. Schalley, and W. E. S. Unger, J. Electron Spectrosc. Relat. Phenom., 2012, 185, 85.

    Article  CAS  Google Scholar 

  208. S. Karamat, C. Ke, U. Y. Inkaya, R. Akram, I. Yildiz, S. S. Zaman, and A. Oral, Progress in Natural Science: Materials International, 2016, 26, 422.

    Article  CAS  Google Scholar 

  209. A. Pancotti, A. de Siervo, M. F. Carazzolle, R. Landers, and P. A. P. Nascente, Thin Solid Films, 2019, 688, 137442.

    Article  CAS  Google Scholar 

  210. B. Pollakowski, B. Beckhoff, F. Reinhardt, S. Braun, and P. Gawlitza, Phys. Rev. B, 2008, 77, 235408.

    Article  Google Scholar 

  211. E. Poirier, C. T. Harrower, P. Kalisvaart, A. Bird, A. Teichert, D. Wallacher, N. Grimm, R. Steitz, D. Mitlin, and H. Fritzsche, J. Alloys Compd., 2011, 509, 5466.

    Article  CAS  Google Scholar 

  212. H. Fritzsche, Appl. Phys. Lett., 2009, 94, 241901.

    Article  Google Scholar 

  213. M. Danaie, Acta Mater., 2015, 90, 259.

    Article  CAS  Google Scholar 

  214. T. Masuda and T. Kondo, Current Opinion in Electrochemistry, 2019, 14, 81.

    Article  CAS  Google Scholar 

  215. M. Mizusawa, K. Sakurai, D. Yamazaki, and M. Takeda, Phys. B, 2018, 551, 270.

    Article  CAS  Google Scholar 

  216. M. V. Avdeev, A. A. Rulev, E. E. Ushakova, Y.N. Kosiachkin, V. I. Petrenko, I. V. Gapon, E.Y. Kataev, V. A. Matveev, L. V. Yashina, and D. M. Itkis, Appl. Surf. Sci., 2019, 486, 287.

    Article  CAS  Google Scholar 

  217. A. Ronneburg, M. Trapp, R. Cubitt, L. Silvi, S. Cap, M. Ballauff, and S. Risse, Energy Storage Materials, 2019, 18, 182.

    Article  Google Scholar 

  218. O. Tanchak, K. Yager, H. Fritzsche, T. Harroun, J. Katsaras, and C. Barrett, J. Chem. Phys., 2008, 129, 084901.

    Article  PubMed  Google Scholar 

  219. A. Singh, H. Klumbies, U. Schröder, L. Müller-Meskamp, M. Geidel, M. Knaut, C. Hoßbach, M. Albert, K. Leo, and T. Mikolajick, Appl. Phys. Lett., 2013, 103, 233302.

    Article  Google Scholar 

  220. P. Niga, D. Wakeham, A. Nelson, G. G. Warr, M. Rutland, and R. Atkin, Langmuir, 2010, 26, 8282.

    Article  CAS  PubMed  Google Scholar 

  221. A. Schwöbel, R. Hausbrand, and W. Jaegermann, Solid State Ionics, 2015, 273, 51.

    Article  Google Scholar 

  222. S. Ueda, J. Electron Spectrosc. Relat. Phenom., 2013, 190, 235.

    Article  CAS  Google Scholar 

  223. M. Wimmer, D. Gerlach, R. G. Wilks, S. Scherf, R. Félix, C. Lupulescu, F. Ruske, G. Schondelmaier, K. Lips, J. Hüpkes, M. Gorgoi, W. Eberhardt, B. Rech, and M. Bär, J. Electron Spectrosc. Relat. Phenom., 2013, 190, 309.

    Article  CAS  Google Scholar 

  224. S. Pletincx, J. M. C. Mol, H. Terryn, A. Hubin, and T. Hauffman, J. Electroanal. Chem., 2019, 848, 113311.

    Article  CAS  Google Scholar 

  225. K. Ozawa, T. Kakubo, K. Shimizu, N. Amino, K. Mase, E. Ikenaga, T. Nakamura, T. Kinoshita, and H. Oji, Appl. Surf. Sci., 2014, 320, 177.

    Article  CAS  Google Scholar 

  226. A. M. Jubb, D. Verreault, R. Posner, L. J. Criscenti, L. E. Katz, and H. C. Allen, J. Colloid Interface Sci., 2013, 400, 140.

    Article  CAS  PubMed  Google Scholar 

  227. A. V. Vázquez, N. E. Shephard, C. L. Steinecker, D. Ahn, S. Spanninga, and Z. Chen, J. Colloid Interface Sci., 2009, 331, 408.

    Article  PubMed  Google Scholar 

  228. A. Devos and P. Emery, Surf. Coat. Technol., 2018, 352, 406.

    Article  CAS  Google Scholar 

  229. P. Petrik, T. Gumprecht, A. Nutsch, G. Roeder, M. Lemberger, G. Juhasz, O. Polgar, C. Major, P. Kozma, M. Janosov, B. Fodor, E. Agocs, and M. Fried, Thin Solid Films, 2013, 541, 131.

    Article  CAS  Google Scholar 

  230. S. Daniš, Z. Matĕj, L. Matĕjová, and M. Krupka, Thin Solid Films, 2015, 591, 215.

    Article  Google Scholar 

  231. A. Singh, M. H. Modi, P. Jonnard, K. Guen, and J. André, J. Electron Spectrosc. Relat. Phenom., 2017, 220, 6.

    Article  CAS  Google Scholar 

  232. C. Schanzer, S. R. Valloppilly, and P. Böni, Nucl. Instrum. Methods A, 2019, 946, 162628.

    Article  CAS  Google Scholar 

  233. M. Sinha and M. H. Modi, Appl. Surf. Sci., 2017, 419, 311.

    Article  CAS  Google Scholar 

  234. Y. Babanov, Y. Salamatov, and V. Ustinov, Superlattices Microstruct., 2014, 74, 100.

    Article  CAS  Google Scholar 

  235. I. Stabrawa, A. Kubala-Kukuś, D. Banaś, G. Pepponi, J. Braziewicz, M. Pajek, and M. Teodorczyk, Thin Solid Films, 2019, 671, 103.

    Article  CAS  Google Scholar 

  236. A. Patselov, A. Ancharov, E. Chernyshev, V. Pilyugin, and K. Zolotarev, Physics Procedia, 2016, 84, 321.

    Article  CAS  Google Scholar 

  237. A. Pradhan, S. Mukherjee, T. Maitra, S. Mukherjee, A. Nayak, and S. Bhunia, Superlattices Microstruct., 2019, 126, 193.

    Article  CAS  Google Scholar 

  238. A. N. A. Biswas, P. Sarkar, P. Rajput, De Rajnarayan, K. D. Rao, M. H. Modi, D. Bhattacharyya, S. N. Jha, and N. K. Sahoo, Thin Solid Films, 2019, 673, 126.

    Article  Google Scholar 

  239. V. G. Antunes, C. A. Figueroa, and F. Alvarez, Appl. Surf. Sci., 2018, 448, 502.

    Article  CAS  Google Scholar 

  240. J. Rubio-Zuazo, P. Ferrer, and G. R. Castro, J. Electron Spectrosc. Relat. Phenom., 2010, 180, 27.

    Article  CAS  Google Scholar 

  241. R. E. Galindo, R. Gago, J. M. Albella, R. Gago, and A. Lousa, Trends Anal. Chem., 2009, 28, 494.

    Article  Google Scholar 

  242. S. Singh, S. Basu, and S. K. Ghosh, Appl. Surf. Sci., 2009, 255, 5910.

    Article  CAS  Google Scholar 

  243. W. Kalisvaart, J. Phys. Chem. C, 2012, 116, 5868.

    Article  CAS  Google Scholar 

  244. P. Kalisvaart, E. Luber, H. Fritzsche, and D. Mitlin, Chem. Commun., 2011, 47, 4294.

    Article  CAS  Google Scholar 

  245. H. Fritzsche, M. Saoudi, J. Haagsma, C. Ophus, E. Luber, C. T. Harrower, and D. Mitlin, Appl. Phys. Lett., 2008, 92, 121917.

    Article  Google Scholar 

  246. H. Ha, H. Fritzsche, G. Burton, and J. Ulaganathan, Journal of the Electrochemical Society, 2017, 164, C699.

    Article  CAS  Google Scholar 

  247. K. Sakurai, M. Mizusawa, M. Ishii, S. Kobayashi, and Y. Imai, J. Phys.: Conf. Ser., 2007, 83, 012001.

    Google Scholar 

  248. V. Innis-Samson, M. Mizusawa, and K. Sakurai, Anal. Chem., 2011, 83, 7600.

    Article  CAS  PubMed  Google Scholar 

  249. J. Jiang, K. Hirano, and K. Sakurai, J. Appl. Phys., 2016, 120, 115301.

    Article  Google Scholar 

  250. J. Jiang and K. Sakurai, Rev. Sci. Instrum., 2016, 87, 093709.

    Article  PubMed  Google Scholar 

  251. J. Jiang, K. Hirano, and K. Sakurai, J. Appl. Cryst., 2017, 50, 712.

    Article  CAS  Google Scholar 

  252. K. Sakurai and J. Jiang, J. Surf. Sci. Soc. Jpn., 2017, 38, 448 (in Japanese).

    Article  CAS  Google Scholar 

  253. K. Sakurai, M. Mizusawa, J. Jiang, and T. Ito, Phys. B, 2018, 551, 426.

    Article  CAS  Google Scholar 

  254. K. Sakurai, J. Jiang, M. Mizusawa, T. Ito, K. Akutsu, and N. Miyata, Sci. Rep., 2019, 9, 571.

    Article  PubMed  PubMed Central  Google Scholar 

  255. A. Hirohata, Y. Yamamoto, B. Murphy, and A. Vick, Nat. Commun., 2016, 7, 12701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. A. Malashevich, E. I. Altman, and S. Ismail-Beigi, arXiv:1407.5645, 2014.

  257. S. M. Bruemmer and L. E. Thomas, Surf. Interface Anal., 2001, 31, 571.

    Article  CAS  Google Scholar 

  258. K. Shiojima, S. Yamamoto, Y. Kihara, and T. Mishima, Applied Physics Express, 2015, 8, 046502.

    Article  Google Scholar 

  259. J. B. Gilchrist, T. H. Basey-Fisher, S. C’E. Chang, F. Scheltens, D. W. McComb, and S. Heutz, Adv. Funct. Mater., 2014, 24, 6473.

    Article  CAS  Google Scholar 

  260. K. Goh, A. Bannani, and C. Troadec, Nanotechnology, 2008, 19, 445718.

    Article  PubMed  Google Scholar 

  261. A. Locatelli and E. Bauer, J. Phys.: Condens. Matter, 2008, 20, 093002.

    Google Scholar 

  262. N. Rougemaille and A. Schmid, Eur. Phys. J. Appl. Phys., 2010, 50, 20101.

    Article  Google Scholar 

  263. F. de la Peña, N. Barrett, L. F. Zagonel, M. Walls, and O. Renault, Surf. Sci., 2010, 604, 1628.

    Article  Google Scholar 

  264. C. Wiemann, M. Patt, S. Cramm, M. Escher, M. Merkel, A. Gloskovskii, S. Thiess, W. Drube, and C. M. Schneider, Appl. Phys. Lett., 2012, 100, 223106.

    Article  Google Scholar 

  265. A. A. Zakharov, A. Mikkelsen, and J. N. Andersen, J. Electron Spectrosc. Relat. Phenom., 2012, 185, 417.

    Article  CAS  Google Scholar 

  266. M. Yoshikawa, M. Murakami, H. Ishida, and H. Harima, Appl. Phys. Lett., 2009, 94, 131908.

    Article  Google Scholar 

  267. C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, Appl. Opt., 2015, 54, 5123.

    Article  PubMed  Google Scholar 

  268. J. A. Zeitler, Y. Shen, C. Baker, P. F. Taday, M. Pepper, and T. Rades, J. Pharm. Sci., 2007, 96, 330.

    Article  CAS  PubMed  Google Scholar 

  269. T. U. Gurbuz, B. Aslanyurek, E. P. Karabulut, and I. Akduman, IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 3013.

    Article  Google Scholar 

  270. S. Ramanathan, Proceedings of 2006 Electronic Components and Technology Conference, 2006, 1865.

  271. S. Ramanathan and D. Cahill, J. Mater. Res., 2006, 21, 1204.

    Article  CAS  Google Scholar 

  272. G. Shekhawat and V. Dravid, Science, 2005, 310, 89.

    Article  CAS  PubMed  Google Scholar 

  273. T. Sun, Z. Jiang, J. Strzalka, L. Ocola, and J. Wang, Nat. Photon., 2012, 6, 586.

    Article  Google Scholar 

  274. E. R. Shanblatt, C. L. Porter, D. F. Gardner, G. F. Mancini, R. M. Karl Jr., M. D. Tanksalvala, C. S. Bevis, V. H. Vartanian, H. C. Kapteyn, D. E. Adams, and M. M. Murnane, Nano Lett., 2016, 16, 5444.

    Article  CAS  PubMed  Google Scholar 

  275. M. K. Tiwari, L. Alianelli, I. P. Dolbnya, and K. J. S. Sawhney, J. Synchrotron Radiat., 2010, 17, 237.

    Article  CAS  PubMed  Google Scholar 

  276. J. Camarero, E. Jiménez, J. Vogel, C. Tieg, P. Perna, A. Bollero, F. Yakhou-Harris, C. Arm, B. Rodmacq, E. Gautier, S. Auffret, B. Delaup, G. Gaudin, B. Dieny, and R. Miranda, J. Appl. Phys., 2011, 109, 07D357.

    Article  Google Scholar 

  277. T. Shirasawa, M. Ohyama, W. Voegeli, and T. Takahashi, Phys. Rev. B, 2011, 84, 075411.

    Article  Google Scholar 

  278. B. J. Kirby, P. A. Kienzle, B. B. Maranville, N. F. Berk, J. Krycka, F. Heinrich, and C. F. Majkrzak, Curr. Opin. Coll. Int. Sci., 2012, 17, 44.

    Article  CAS  Google Scholar 

  279. W. Zhao and K. Sakurai, Phys. Rev. Mater., 2019, 3, 023802.

    Article  CAS  Google Scholar 

  280. K. Sakurai, M. Mizusawa, and M. Ishii, Trans. Mater. Res. Soc. Jpn., 2007, 32, 181.

    Article  CAS  Google Scholar 

  281. M. Mizusawa and K. Sakurai, IOP Conference Series: Materials Science and Engineering, 2011, 24, 012013.

    Article  Google Scholar 

  282. Y. Liu and K. Sakurai, Langmuir, 2018, 34, 11272.

    Article  CAS  PubMed  Google Scholar 

  283. Y. Liu and K. Sakurai, Polym. J., 2019, 51, 1073.

    Article  CAS  Google Scholar 

  284. Y. Liu and K. Sakurai, Chem. Lett., 2017, 46, 495.

    Article  CAS  Google Scholar 

  285. Y. Liu and K. Sakurai, ACS Omega, 2019, 4, 12194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. A. E. F. de Jong, V. Vonk, V. Honkimäki, B. Gorges, H. Vitoux, and E. Vlieg, J. Cryst. Growth, 2015, 420, 84.

    Article  Google Scholar 

  287. M. Nakamura, Current Opinion in Electrochemistry, 2019, 14, 200.

    Article  CAS  Google Scholar 

  288. V. Tran, S. Ha, H. Oh, S. Kim, I. Cho, J. Chung, B. Mun, O. Seo, and D. Noh, Thin Solid Films, 2019, 689, 137518.

    Article  CAS  Google Scholar 

  289. Y. Ye, C. Wu, L. Zhang, Y. Liu, P. Glans-Suzuki, and J. Guo, J. Electron Spectrosc. Relat. Phenom., 2017, 221, 2.

    Article  CAS  Google Scholar 

  290. T. Sasaki and M. Takahasi, J. Cryst. Growth, 2019, 512, 33.

    Article  CAS  Google Scholar 

  291. A. J. Brown, H. B. Dong, P. B. Howes, and C. L. Nicklin, Scr. Mater., 2014, 77, 60.

    Article  CAS  Google Scholar 

  292. B. Allouche, I. Gueye, G. Le Rhun, P. Gergaud, and N. Vaxelaire, Mater. Des., 2018, 154, 340.

    Article  CAS  Google Scholar 

  293. S. G. Booth, S. Chang, A. Uehara, C. La Fontaine, G. Cibin, S. L. M. Schroeder, and R. A. W. Dryfe, Electrochim. Acta, 2017, 235, 251.

    Article  CAS  Google Scholar 

  294. P. N. Rao, S. K. Rai, A. K. Sinha, M. N. Singh, and G. S. Lodha, Thin Solid Films, 2015, 589, 268.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sakurai.

Additional information

Krassimir Stoevreceived his Ph.D. degree in x-ray physics in 1991. Currently he is working as a Senior Scientist at Canadian Nuclear Laboratory, Chalk River. He is involved in developing nondestructive testing methods, x-ray and radiation imaging instrumentation, and creation of software for computer modeling, data analysis, and image processing.

Kenji Sakuraiis a group leader at the National Institute for Materials Science (NIMS), Tsukuba, Japan, and is also a professor at University of Tsukuba. In addition to some materials research on non-crystalline solids and some inorganic crystals, his main research interest has been novel analytical imaging methods and instruments using X-rays and neutrons, suitable for near future materials science and engineering to support sustainable growth of the world. Latest activities are listed in the following web page: https://researchmap.jp/kenji.sakurai.xray?lang=en; http://xray-neutron-buriedinterface. jp/lab/backgrounde.html.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoev, K., Sakurai, K. Recent Progresses in Nanometer Scale Analysis of Buried Layers and Interfaces in Thin Films by X-rays and Neutrons. ANAL. SCI. 36, 901–922 (2020). https://doi.org/10.2116/analsci.19R010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19R010

Keywords

Navigation