Skip to main content
Log in

Capillary Electrophoretic Characterization of Water-soluble Carbon Nanodots Formed from Glutamic Acid and Boric Acid under Microwave Irradiation

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstact

Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc., 2004, 126, 12736.

    Article  CAS  PubMed  Google Scholar 

  2. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. Monica Veca, and S.-Y. Xie, J. Am. Chem. Soc., 2006, 128, 7756.

    Article  CAS  PubMed  Google Scholar 

  3. S. N. Baker and G. A. Baker, Angew. Chem. Int. Ed., 2010, 49, 6726.

    Article  CAS  Google Scholar 

  4. Q.-L. Zhao, Z.-L. Zhang, B.-H. Huang, J. Peng, M. Zhang, and D.-W. Pang, Chem. Commun., 2008, 5116.

    Google Scholar 

  5. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, Chem. Commun., 2009, 5118.

    Google Scholar 

  6. K. Morita, A. Kobayashi, H. Nagatani, and H. Imura, Anal. Sci., 2015, 31, 481.

    Article  CAS  PubMed  Google Scholar 

  7. K. Morita, S. Kurusu, H. Kodama, and N. Hirayama, Anal. Sci., 2017, 33, 1461.

    Article  CAS  PubMed  Google Scholar 

  8. Y. Sun, Q. Bi, X. Zhang, L. Wang, X. Zhang, S. Dong, and L. Zhao, Anal. Biochem., 2016, 500, 38.

    Article  CAS  PubMed  Google Scholar 

  9. Q. Hu, X. Gong, L. Liu, and M. M. F. Choi, J. Nanomater., 2017, 1804178.

    Google Scholar 

  10. J. C. Vinci and L. A. Colon, Anal. Chem., 2012, 84, 1178.

    Article  CAS  PubMed  Google Scholar 

  11. J. C. Vinci and L. A. Colón, Microchem. J., 2013, 110, 660.

    Article  CAS  Google Scholar 

  12. E. Duffy, D. P. Mitev, P. N. Nesterenko, A. A. Kazarian, and B. Paull, Electrophoresis, 2014, 35, 1864.

    Article  CAS  PubMed  Google Scholar 

  13. Z. Markova, A. B. Bourlinos, K. Safarova, K. Polakova, J. Tucek, I. Medrik, K. Siskova, J. Petr, M. Krysmann, E. P. Giannelis, and R. Zboril, J. Mater. Chem., 2012, 22, 16219.

    Article  CAS  Google Scholar 

  14. Q. Hu, M. C. Paau, Y. Zhang, W. Chan, X. Gong, L. Zhang, and M. M. F. Choi, J. Chromatogr. A, 2013, 1304, 234.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Wu and V. T. Remcho, Talanta, 2016, 161, 854.

    Article  CAS  PubMed  Google Scholar 

  16. H. K. Sadhanala and K. K. Nanda, Carbon, 2016, 96, 166.

    Article  CAS  Google Scholar 

  17. M. B. Müller, J. P. Quirino, P. N. Nesterenko, P. R. Haddad, S. Gambhir, D. Li, and G. G. Wallace, J. Chromatogr. A, 2010, 1217, 7593.

    Article  PubMed  Google Scholar 

  18. T. Takayanagi, M. Morimoto, and T. Yabutani, Anal. Sci., 2013, 29, 769.

    Article  CAS  PubMed  Google Scholar 

  19. T. Takayanagi, Y. Becchaku, Y. Tomiyama, M. Kurashina, and H. Mizuguchi, Anal. Sci., 2019, 35, 307.

    Article  CAS  PubMed  Google Scholar 

  20. T. Takayanagi, M. Amiya, N. Shimakami, and T. Yabutani, Anal. Sci., 2015, 31, 1193.

    Article  CAS  PubMed  Google Scholar 

  21. The R Project for Statistical Computing, http://www.r-project.org/.

  22. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and A. Ando, Anal. Chem., 1984, 56, 111.

    Article  CAS  Google Scholar 

  23. S. Terabe, TrAC—Trends Anal. Chem., 1989, 8, 129.

    Article  CAS  Google Scholar 

  24. R. Ciriello, P. T. Iallorenzi, A. Laurita, and A. Guerrieri, Electrophoresis, 2017, 38, 922.

    Article  CAS  PubMed  Google Scholar 

  25. T. Takayanagi, E. Wada, and S. Motomizu, Analyst [London], 1997, 122, 57.

    Article  CAS  Google Scholar 

  26. Understanding your ChemStation, https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf, 240.

Download references

Acknowledgments

This work was supported by JSPS KAKENHI [grant number 17K05903 and 18K05184].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshio Takayanagi or Kotaro Morita.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takayanagi, T., Iwasaki, S., Becchaku, Y. et al. Capillary Electrophoretic Characterization of Water-soluble Carbon Nanodots Formed from Glutamic Acid and Boric Acid under Microwave Irradiation. ANAL. SCI. 36, 941–946 (2020). https://doi.org/10.2116/analsci.19P484

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P484

Keywords

Navigation