Skip to main content
Log in

Measuring the Henry’s Law Constant for Carbon Dioxide and Water with UV-visible Absorption Spectroscopy

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The Henry’s law constant defines the solubility of a gas in a liquid solution. In this study, a new method for measuring the Henry’s law constant is described. This new colorimetric method is suited for gases which react with water to form acidic or basic solutions when they dissolve, and makes use of measuring the concentration of two forms of a colorimetric pH indicator. By measuring the concentration of the protonated and deprotonated forms of the indicator with UV-visible absorption spectroscopy, the concentration of the hydronium in solution was determined. After determining the hydronium concentration, the equilibrium expression for the dissolved gas reacting with water was solved to determine the concentration of the dissolved gas. The concentration of the dissolved gas and the measured partial pressure of the dissolved gas at equilibrium were then used to calculate the Henry’s law constant for the gas. The efficacy of the method is demonstrated by measuring the Henry’s law constant for carbon dioxide in water over a range of pressures (0.680–5.10 atm). The results obtained with this method are comparable to the value for the Henry’s law constant that have been previously reported via more traditional methods, and yielded values for the Henry’s law constant for carbon dioxide that ranged from 3.45 × 10−2 to 3.99 × 10−2 M atm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Mondal, Fluid Phase Equilib., 2007, 253, 98.

    Article  CAS  Google Scholar 

  2. R. Bunsen, Philos. Mag., 1855, 9, 116.

    Article  Google Scholar 

  3. W. Henry, Philos. Trans. R. Soc. London, 1803, 93, 29.

    Article  Google Scholar 

  4. D. Mackay and W. Y. Shiu, J. Phys. Chem. Ref. Data, 1981, 10, 1175.

    Article  CAS  Google Scholar 

  5. J. M. Allen, W. X. Balcavage, B. R. Ramachandran, and A. L. Shrout, Environ. Toxicol. Chem., 1998, 17, 1216.

    Article  CAS  Google Scholar 

  6. F. Nielsen, E. Olsen, and A. Fredenslund, Environ. Sci. Technol., 1994, 28, 2133.

    Article  CAS  PubMed  Google Scholar 

  7. G. A. Robbins, S. Wang, and J. D. Stuart, Anal. Chem., 1993, 65, 3113.

    Article  CAS  Google Scholar 

  8. J. M. Gossett, Environ. Sci. Technol., 1987, 21, 202.

    Article  CAS  Google Scholar 

  9. A. H. Lincoff and J. M. Gossett, “Gas Transfer at Water Surfaces”, ed. W. Brutsaert and G. H. Jirka, 1st ed., 1984, Springer, Netherlands, 17–25.

  10. D. Mackay, W. Y. Shiu, and R. P. Sutherl, Environ. Sci. Technol., 1979, 13, 333.

    Article  CAS  Google Scholar 

  11. J. C. Sagebiel, J. N. Seiber, and J. E. Woodrow, Chemosphere, 1992, 25, 1763.

    Article  CAS  Google Scholar 

  12. D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, “Fundamentals of Analytical Chemistry”, 9th ed., 2014, Brooks/Cole Cengage, Belmont, CA.

    Google Scholar 

  13. S. C. Doney, V. J. Fabry, R. A. Feely, and J. A. Kleypas, Ann. Rev. Mar. Sci., 2009, 1, 169.

    Article  PubMed  Google Scholar 

  14. H. Yamazaki, R. P. Sperline, and H. Freiser, Anal. Chem., 1992, 64, 2720.

    Article  CAS  Google Scholar 

  15. D. A. Skoog, F. J. Holler, and T. A. Nieman, “Principles of Instrumental Analysis”, 5th ed., 1998, Brooks/Cole Thomson Learning, Belmont, CA.

    Google Scholar 

  16. D. C. Harris, “Quantitative Chemical Analysis”, 6th ed., 2003, W. H. Freeman, New York, NY.

    Google Scholar 

  17. J. Amador, A. Rojas, E. Colunga, I. De la Garza, M. Velázquez, and L. Medina, Eur. J. Chem., 2014, 5, 1.

    Article  Google Scholar 

  18. H. B. Rodríguez and M. Mirenda, J. Chem. Educ., 2012, 89, 1201.

    Article  Google Scholar 

  19. S. N. Park, C. S. Kim, M. H. Kim, I. J. Lee, and K. Kim, J. Chem. Soc. Faraday Trans., 1998, 94, 1421.

    Article  Google Scholar 

  20. M. Hofmann, S. Mathesius, E. Kriegler, D. P. va Vuuren, and H. J. Schellnhuber, Nat. Commun., 2019, 10, 5592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Sander, “NIST Chemistry WebBook, NIST Standard Reference Database Number 69”, ed. P. J. Linstrom and W. G. Mallard, 2019, National Institute of Standards and Technology, Gaithersburg, MD 20899.

Download references

Acknowledgments

This work was funded by the Lander University sabbatical program. A special thanks to Emerald Welders for the custom fabrication of the pressure chamber utilized in this study.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dukes, A.D. Measuring the Henry’s Law Constant for Carbon Dioxide and Water with UV-visible Absorption Spectroscopy. ANAL. SCI. 36, 971–975 (2020). https://doi.org/10.2116/analsci.19P477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P477

Keywords

Navigation