Skip to main content
Log in

Electrochemical Molecular Beacon for Nucleic Acid Sensing in a Homogeneous Solution

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Ferrocene (Fc) and β-cyclodextrin (βCyD) were modified at each end of stem-loop structured DNA as an electrochemical signal generator and its quencher, respectively, to give an electrochemical molecular beacon (eMB). A relatively high efficiency of signal quenching was achieved by an inclusion complex (βCyD ⊃ Fc) formation that was induced on the stem structure of the closed form (= stem-loop structure) of eMB. With the addition of target DNA, the structure of eMB opened to form a linear duplex, where the Fc dissociated from the βCyD to restore its intrinsic electrochemical signal. The signal contrast of the electric current for this off/on-type sensor was high, ca. 95. This technique did not require any modification of the electrode surface, and it realized the detection of the target nucleic acids in a homogeneous solution with a high sensitivity using high-performance liquid chromatography (HPLC) equipped with electrochemical detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chiba, Y. Ichikawa, M. Kamiya, T. Komatsu, T. Ueno, K. Hanaoka, T. Nagano, N. Lange, and Y. Urano, Angew. Chem. Int. Ed., 2017, 56, 10418. (b) S. Mao, Y. Ying, X. Wu, C. J. Krueger, and A. K. Chen, Nucl. Acids Res., 2019, 47, e131. (c) J. C. Alexander, S. Browne, A. Pandit, and Y. Rochev., PLOS ONE, 2013, 8, e65749. (d) L. Qiu, C. Wu, M. You, D. Han, T. Chen, G. Zhu, J. Jiang, R. Yu, and W. Tan, J. Am. Chem. Soc., 2013, 135, 12952.

    Article  CAS  Google Scholar 

  2. G. Bonet, S. Tyagi, A. Libchaber, and F. R. Kramer, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 6171. (b) S. Tyagi and F. R. Kramer, Nat. Biotechnol., 1996, 14, 303.

    Article  Google Scholar 

  3. Y. Kitamura, S. Yamamoto, Y. Osawa, H. Matsuura, and T. Ihara, Chem. Commun., 2013, 49, 285. (b) X. Zuo, S. Song, J. Zhang, D. Pan, L. Wang, and C. Fan, J. Am. Chem. Soc., 2007, 129, 1042. (c) R. Yamamoto and P. K. R. Kumar, Genes Cells, 2000, 5, 389. (d) W. Wang, C. Chen, M. Qian, and X. Zhao, Sens. Actuators, B, 2008, 129, 211. (e) N. Hamaguchi, A. Ellington, and M. Stanton, Anal. Biochem., 2001, 294, 126.

    Article  CAS  Google Scholar 

  4. S. Takenaka, Y. Uto, H. Kondo, T. Ihara, and M. Takagi, Anal. Biochem., 1994, 218, 436. (b) T. Ihara, Y. Maruo, S. Takenaka, and M. Takagi, Nucl. Acids Res., 1996, 24, 4273. (c) T. Ihara, M. Nakayama, M. Murata, K. Nakano, and M. Maeda, Chem. Commun., 1997, 1609. (d) S. Wang, L. Zhang, S. Wan, S. Cansiz, C. Cui, Y. Liu, R. Cai, C. Hong, I.-T. Teng, M. Shi, Y. Wu, Y. Dong, and W. Tan, ACS Nano, 2017, 11, 4943. (e) Z. Ge, M. Lin, P. Wang, H. Pei, J. Yan, J. Shi, Q. Huang, D. He, C. Fan, and X. Zuo, Anal. Chem., 2014, 86, 2124. (f) S. Sato and S. Takenaka, Anal. Chem., 2012, 84, 1772. (g) A. Anne and C. Demaille, J. Am. Chem. Soc., 2006, 128, 542. (h) A. Trifonov, E. Sharon, R. Tel-Vered, J. S. Kahn, and I. Willner, J. Phys. Chem. C, 2016, 120, 15743. (i) T. G. Drummond, M. G. Hill, and J. K. Barton, Nat. Biotechnol., 2003, 21, 1192. (j) E. Farjami, L. Clima, K. Gothelf, and E. E. Ferapontova, Anal. Chem., 2011, 83, 1594.

    Article  CAS  PubMed  Google Scholar 

  5. T. Ihara, T. Wasano, R. Nakatake, P. Arslan, A. Futamura, and A. Jyo, Chem. Commun., 2011, 47, 12388.

    Article  CAS  Google Scholar 

  6. S. Agrawal, “Protocols for Oligonucleotide Conjugates, Synthesis and Analytical Techniques, Methods in Molecular Biology”, 1993, Vol. 26, Humana Press, Tomowa, NJ, 233.

    Article  Google Scholar 

  7. G. T. Hermanson, “Bioconjugate Techniques”, 1996, Academic Press, San Diego.

    Google Scholar 

  8. L. A. Marky and K. J. Breslauer, Biopolymers, 1987, 26, 1601.

    Article  CAS  PubMed  Google Scholar 

  9. D. R. van Staveren and N. Metzler-Nolte, Chem. Rev., 2004, 104, 5931. (b) T. Matsue, D. H. Evans, T. Osa, and N. Kobayashi, J. Am. Chem. Soc., 1985, 107, 3411. (c) S. Watanabe, S. Sato, K. Ohtsuka, and S. Takenaka, Anal. Chem., 2011, 83, 7290.

    Article  PubMed  Google Scholar 

  10. J.-S. Wu, K. Toda, A. Tanaka, and I. Sanemasa, Bull. Chem. Soc. Jpn., 1998, 71, 1615.

    Article  CAS  Google Scholar 

  11. H. Aoki, A. Kitajima, and H. Tao, Spramol. Chem., 2010, 7, 455.

    Article  Google Scholar 

  12. A. Tsourkas, M. A. Behlke, S. D. Rose, and G. Bao, Nucl. Acids Res., 2003, 31, 1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was partly supported by a grant-in-aid for Scientific Research (B) (No. 15H03829 to T. I.) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. We thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yusuke Kitamura or Toshihiro Ihara.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitamura, Y., Mishio, K., Arslan, P. et al. Electrochemical Molecular Beacon for Nucleic Acid Sensing in a Homogeneous Solution. ANAL. SCI. 36, 959–964 (2020). https://doi.org/10.2116/analsci.19P456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P456

Keywords

Navigation