Skip to main content
Log in

Comparative Study of Electrochemical Sensors Based on Enzyme Immobilized into Polyelectrolyte Microcapsules and into Chitosan Gel

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The characteristics of an electrochemical biosensor based on a Prussian-blue screen-printed electrode containing glucose oxidase incorporated into polyelectrolyte microcapsules (PMC) are considered. PMC with the embedded enzyme were formed using sodium polystyrene sulfonate and poly(allylamine hydrochloride). The characteristics were compared with those of the enzyme immobilized in chitosan gel. We assessed the dependences of biosensor signals on the composition of the buffer solution, on the glucose concentration; the operational and long-term stabilities. The enzyme immobilized in PMC proved to be more sensitive to buffer molarity at a maximum within 35–40 mM. The apparent Michaelis constants were 1.5 and 4.1 mM at the immobilization in, respectively, chitosan and PMC. The developed biosensors were used to assay commercial juices. The biosensors' data on the glucose contents were shown to have a high correlation with the standard spectrophotometric assay (0.92–0.95%), which implies a possible application of the fabricated biosensors in foodstuff analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Rodriguez-Nogales and A. Delgadillo, J. Mol. Catal. B, 2005, 33(1-2), 15.

    Article  CAS  Google Scholar 

  2. A. Ramanavicius, A. Kausaite, and A. Ramanavicien, Sens. Actuators, B, 2005, 111-112, 532.

    Article  Google Scholar 

  3. A. C. Pierre, J. Biocatal. Biotransform., 2004, 22, 145.

    Article  CAS  Google Scholar 

  4. X. Zhu, Y. Ma, C. Zhao, Z. Lin, L. Zhang, R. Chen, and W. Yang, Langmuir, 2014, 30, 15229.

    Article  CAS  PubMed  Google Scholar 

  5. M. J. McShane, Methods Mol. Biol, 2011, 679, 147.

    Article  CAS  PubMed  Google Scholar 

  6. K. Etsuo, Bioseparation, 1998, 7, 241.

    Article  Google Scholar 

  7. S. Yabuki, Anal. Sci., 2011, 27, 695.

    Article  CAS  PubMed  Google Scholar 

  8. M. A. Cerqueira, A. C. Pinheiro, O. L. Ramos, H. Silva, A. I. Bourbon, and A. A. Vicente, in “Micro and Nano Technologies, Emerging Nanotechnologies in Food Science”, ed. R. Busquets, 2017, Elsevier, 11.

  9. A. Munin and F. Edwards-Lévy, Pharmaceutics, 2011, 3, 793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Larrañaga, M. Lomora, J. R. Sarasua, C. G. Palivan, and A. Pandit, Prog. Mater Sci., 2017, 90, 325.

    Article  Google Scholar 

  11. B. I. Sukhorukov, S. A. Tikhonenko, E. A. Saburova, A. V. Dubrovsky, Y. N. Dybovskaya, and L. I. Shabarchina, Biophysics, 2007, 52, 575.

    Article  Google Scholar 

  12. F. Caruso, D. Trau, H. Mohwald, and R. Renneberg, Langmuir, 2000, 16, 1485.

    Article  CAS  Google Scholar 

  13. V. I. Ternovsky, Y. V. Chernokhvostov, M. G. Fomkina, and M. M. Montrel, Biofizika, 2007, 52, 825.

    Google Scholar 

  14. M. M. Montrel, A. I. Petrov, V. I. Ternovsky, and M. G. Fomkina, RF Patent, 2008, 2333231.

    Google Scholar 

  15. A. N. Reshetilov, Y. V. Plekhanova, S. A. Tikhonenko, and A. V. Dubrovskii, J. Anal. Chem., 2015, 70, 1368.

    Article  CAS  Google Scholar 

  16. L. O. Yagodina and Y. V. Chernokhvostov, Vestn. Kazan Technological University, 2013, 16, 117.

    CAS  Google Scholar 

  17. L. I. Kazakova, N. P. Sirota, T. V. Sirota, and L. I. Shabarchina, Russ. J. Phys. Chem. A, 2017, 91, 1828.

    Article  CAS  Google Scholar 

  18. E. A. Saburova, B. I. Sukhorukov, M. E. Bobreshova, and L. I. Elphimova, Biochemistry (Moscow), 2000, 65, 976.

    CAS  PubMed  Google Scholar 

  19. C. Ding, H. Sun, J. Ren, and X. Qu, Anal. Chim. Acta, 2017, 952, 88.

    Article  CAS  PubMed  Google Scholar 

  20. P. A. Fiorito, C. M. A. Brett, and S. I. C. de Torresi, Talanta, 2006, 69, 403.

    Article  CAS  PubMed  Google Scholar 

  21. J. Li, J. D. Qiu, J. J. Xu, H. Y. Chen, and X. H. Xia, Adv. Funct. Mater., 2007, 17, 1574.

    Article  CAS  Google Scholar 

  22. A. A. Karyakin, O. V. Gitelmacher, and E. E. Karyakina, Anal. Lett., 1994, 27, 2861.

    Article  CAS  Google Scholar 

  23. A. Baranwal, A. Kumar, A. Priyadharshini, G. S. Oggu, I. Bhatnagar, A. Srivastava, and P. Chandra, Int. J. Biol. Macromol., 2018, 110, 110.

    Article  CAS  PubMed  Google Scholar 

  24. M. Hasanzadeh, N. Shadjou, and M. de la Guardia, TrAC, 2018, 102, 210.

    CAS  Google Scholar 

  25. A. I. Petrov, D. V. Volodkin, and G. B. Sukhorukov, Biotechnol. Prog., 2005, 21, 918.

    Article  CAS  PubMed  Google Scholar 

  26. X. Wang, H. Gu, F. Yin, and Y. Tu, Biosens. Bioelectron., 2009, 24, 1527.

    Article  CAS  PubMed  Google Scholar 

  27. D. Barham and P. Trinder, Analyst, 1972, 97, 142.

    Article  CAS  PubMed  Google Scholar 

  28. A. P. Nechayev, S. E. Traubenberg, and A. A. Kochetkova, “Food Chemistry”, 4th ed., 2007, GIORD Publishers, St. Petersburg, RF, 640.

    Google Scholar 

  29. S. A. Tikhonenko, E. A. Saburova, E. N. Durdenko, and B. I. Sukhorukov, Russ. J. Phys. Chem. A, 2009, 83, 1781.

    Article  CAS  Google Scholar 

  30. J.-Y. Nam, H.-W. Kim, K.-H. Lim, H.-S. Shin, and B. E. Logan, Biosens. Bioelectron., 2010, 25, 1155.

    Article  CAS  PubMed  Google Scholar 

  31. O. Lefebvre, Z. Tan, S. Kharkwal, and H. Y. Ng, Bioresour. Technol., 2012, 112, 336.

    Article  CAS  PubMed  Google Scholar 

  32. M. J. McShane, Methods Mol. Biol., 2011, 679, 147.

    Article  CAS  PubMed  Google Scholar 

  33. A. Fersht, Enzyme Structure and Mechanism, Reading, San Francisco, 1977, 371.

    Google Scholar 

  34. B. M. Lee and T. M. S. Wolever, Eur. J. Clin. Nutr., 1998, 52, 924.

    Article  CAS  PubMed  Google Scholar 

  35. S. Belbekhouche, S. Charaabi, L. Picton, D. Le Cerf, and B. Carbonnier, Carbohydr Polym., 2018, 184, 144.

    Article  CAS  PubMed  Google Scholar 

  36. A. Reshetilov, Y. Plekhanova, S. Tarasov, S. Tikhonenko, A. Dubrovsky, A. Kim, V. Kashin, A. Machulin, G.-J. Wang, V. Kolesov, and I. Kuznetsova, Membranes, 2019, 9, 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. Madannejad, N. Shoaie, F. Jahanpeyma, M. H. Darvishi, M. Azimzadeh, and H. Javadi, Chemico-Biological Interactions, 2019, doi: https://doi.org/10.1016Zj.cbi.2019.04.036.

    Google Scholar 

  38. L. Yang, X.-B. Luo, and S.-L. Luo, “Assessment on Toxicity of Nanomaterials”, ed. X. Luo and F. Deng, 2019, Chap. 9, Elsevier Inc., 273.

Download references

Acknowledgments

The authors acknowledge Victor Selivanov for providing language help. The work was supported by a Russian Science Foundation grant No. 18-49-08005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulia V. Plekhanova or Anatoly N. Reshetilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plekhanova, Y.V., Tikhonenko, S.A., Dubrovsky, A.V. et al. Comparative Study of Electrochemical Sensors Based on Enzyme Immobilized into Polyelectrolyte Microcapsules and into Chitosan Gel. ANAL. SCI. 35, 1037–1043 (2019). https://doi.org/10.2116/analsci.19P131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P131

Keywords

Navigation