Skip to main content
Log in

Diaminomaleonitrile-based Fluorophores as Highly Selective Sensing Platform for Cu2+

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A colorimetric and turn-on fluorescent chemodosimeter 1 based on diaminomaleonitrile was synthesized for Cu2+ detection. It showed high selectivity and sensitivity towards Cu2+ over the other tested metal ions. Probe 1 in acetonitrile exhibited a strong absorption band at 530 nm and weak fluorescence emission when excited at 480 nm, while the addition of Cu2+ could lead to a 30-nm blue shift of the absorption band and a remarkable fluorescence enhancement. Moreover, the detection limit of probe 1 for Cu2+ was calculated to be 28 nM. Quite different from the reported mechanism based on a metal-complexation induced fluorescence enhancement, the sensing mechanism was proved to be based on the Cu2+-promoted hydrolysis reaction, which was confirmed by 1H NMR, 13C NMR and mass spectrum analysis. Studies on probe 2 were carried out to verify the universality of this sensing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. R. Stem, J. Toxicol. Environ. Healt, Part A, 2010, 73, 114.

    Article  Google Scholar 

  2. E. Gaggelli, H. Kozlowski, D. Valensin, and G. Valensin, Chem. Rev., 2006, 106, 1995.

    Article  CAS  PubMed  Google Scholar 

  3. P. G. Georgopoulos, A. Roy, M. J. Yonone-Lioy, R. E. Opiekun, and P. J. Lioy, J. Toxicol. Environ. Health, Part B, 2001, 4, 341.

    Article  CAS  Google Scholar 

  4. R. B. An, D. T. Zhang, Y. Chen, and Y. Z. Cui, Sens. Actuators, B, 2016, 222, 48.

    Article  CAS  Google Scholar 

  5. H. Yu, J. Y. Lee, S. Angupillai, S. Wang, S. H. Feng, S. Matsumoto, and Y. A. Son, Spectrochim. Acta, Part A, 2015, 151, 48.

    Article  CAS  Google Scholar 

  6. X. F Meng, Y. X. Xu, J. L. Liu, L. N. Sun, and L. Y. Shi, Anal. Methods, 2016, 8, 1044.

    Article  CAS  Google Scholar 

  7. M. S. Kim, J. M. Jung, J. H. Kang, H. M. Ahn, P G. Kim, and C. Kim, Tetrahedron, 2017, 73, 4570.

    Google Scholar 

  8. D. Udhayakumari, S. Naha, and S. Velmathi, Anal. Methods, 2017, 9, 552.

    Article  CAS  Google Scholar 

  9. G. Sivaraman, M. Iniya, T. Anand, N. G. Kotla, O. Sunnapu, S. Singaravadivel, A. Gulyani, and D. Chellappa, Coord. Chem. Rev., 2018, 357, 50.

    Article  CAS  Google Scholar 

  10. B. Kaur, N. Kaur, and S. Kumar, Coord. Chem. Rev., 2018, 358, 13.

    Article  CAS  Google Scholar 

  11. T. Sun, Q. F Niu, T. D. Li, Z. R. Guo, and H. X. Liu, Spectrochim. Acta, Part A, 2018, 188, 411.

    Article  CAS  Google Scholar 

  12. W. T. Li, G. H. Zhu, J. H. Li, Z. Q. Wang, and Y. X. Jin, Molecules, 2016, 21, 107.

    Article  PubMed  PubMed Central  Google Scholar 

  13. L. Q. Li, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2016, 46, 1854.

    Article  CAS  Google Scholar 

  14. H. Y. Liu, F. X. Wu, B. B. Zhang, C. Y. Tan, Y. Z. Chen, G. F Hao, Y. Tan, and Y. Y. Jiang, RSC Adv., 2016, 6, 7750.

    Google Scholar 

  15. C. M. Li, Z. X. Liu, Y. Miao, X. Zhou, and X. Wu, Dyes Pigm., 2016, 125, 292.

    Article  CAS  Google Scholar 

  16. F. Zhao, Y. Hu, Q. Li, and S. L. Hu, Heterocycles, 2017, 94, 515.

    Article  Google Scholar 

  17. P. ReddyPrasad and T Imae, Taiwan Inst. Chem. E, 2017, 72, 194.

    Article  CAS  Google Scholar 

  18. M. J. Wei, Y. Y. Zhang, H. T Li, and S. Z. Yao, Anal. Methods, 2017, 9, 3956.

    Article  CAS  Google Scholar 

  19. Y. P. Wang, D. L. Qiu, M. N. Li, Y. J. Liu, H. B. Chen, and H. M. Li, Spectrochim. Acta, Part A, 2017, 185, 256.

    Article  CAS  Google Scholar 

  20. K. Mahesh and S. Karpagam, Sens. Actuators, B, 2017, 251, 9.

    Article  CAS  Google Scholar 

  21. J. Xu, Z. K. Wang, C. Y. Liu, Z. H. Xu, B. C. Zhu, N. Wang, K. Wang, and J. T. Wang, Anal. Sci., 2018, 34, 453.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Zeng, G. X. Zhang, and D. Q. Zhang, Anal. Sci., 2015, 31, 191.

    Article  CAS  PubMed  Google Scholar 

  23. R. Kato, Anal. Sci., 2018, 34, 395.

    Article  CAS  PubMed  Google Scholar 

  24. S. P Wu, T. H. Wang, and S. R. Liu, Tetrahedron, 2010, 66, 9655.

    Article  CAS  Google Scholar 

  25. H. C. Lan, B. Liu, G. L. Lv, Z. H. Li, X. D. Yu, K. Y. Liu, X. H. Cao, H. Yang, S. P. Yang, and T. Yi, Sens. Actuators, B, 2012, 173, 811.

    Article  CAS  Google Scholar 

  26. H. P. Zhou, J. Q. Wang, Y. X. Chen, W. G. Xi, Z. Zheng, D. L. Xu, Y. L. Cao, G. Lin, W. J. Zhu, J. Y. Wu, and Y. P Tian, Dyes Pigm., 2013, 98, 1.

    Article  CAS  Google Scholar 

  27. W. G. Xia, Y. M. Gong, B. Mei, X. Z. Zhang, Y. B. Zhang, B. Y. Chen, J. Y. Wu, Y. P. Tian, and H. P. Zhou, Sens. Actuators, B, 2014, 205, 158.

    Article  Google Scholar 

  28. T. G. Jo, Y. J. Na, J. J. Lee, M. M. Lee, S. Y. Lee, and C. Kim, New J. Chem., 2015, 39, 2580.

    Article  CAS  Google Scholar 

  29. T. G. Jo, Y. J. Na, J. J. Lee, M. M. Lee, S. Y. Lee, and C. Kim, Sens. Actuators, B, 2015, 211, 498.

    Article  CAS  Google Scholar 

  30. S. A. Lee, J. J. Lee, J. W. Shin, K. S. Min, and C. Kim, Dyes Pigm., 2015, 116, 131.

    Article  CAS  Google Scholar 

  31. I. J. Chang, M. G. Choi, Y. A. Jeong, S. H. Lee, and S. K. Chang, Tetrahedron Lett., 2017, 58, 474.

    Article  CAS  Google Scholar 

  32. R. L. Sheng, P. F. Wang, Y. H. Gao, Y. Wu, W. M. Liu, J. J. Ma, H. P Li, and S. K. Wu, Org. Lett., 2008, 10, 5015.

    Article  CAS  PubMed  Google Scholar 

  33. X. Y. Xue, D. Y. Jiang, C. Feng, H. Zhang, Z. F. Wang, and H. Zhao, Inorg. Chem. Commun., 2017, 86, 258.

    Article  CAS  Google Scholar 

  34. W. Li, Y. Zhang, X. P. Gan, M. D. Yang, B. Mie, M. Fang, Q. Y. Zhang, J. H. Yu, J. Y. Wu, Y. P. Tian, and H. P. Zhou, Sens. Actuators, B, 2015, 206, 640.

    Article  CAS  Google Scholar 

  35. A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891.

    Article  CAS  PubMed  Google Scholar 

  36. X. Qi, E. J. Jun, L. Xu, S.-J. Kim, J. S. J. Hong, Y. J. Yoon, and J. Y. Yoon, J. Org. Chem, 2006, 71, 2881.

    Article  CAS  PubMed  Google Scholar 

  37. D. C. Wang, J. L. Fan, X. Q. Gao, B. S. Wang, S. G. Sun, and X. J. Peng, J. Org. Chem., 2009, 74, 7675.

    Article  CAS  PubMed  Google Scholar 

  38. Y. H. Yu, N. Bogliotti, J. Tang, and J. Xie, Eur. J. Org. Chem., 2013, 2013, 7749.

    Article  CAS  Google Scholar 

  39. J. S. Kim and D. T. Quang, Chem. Rev., 2007, 107, 3780.

    Article  CAS  PubMed  Google Scholar 

  40. A. Fujii, Y. Sekiguchi, H. Matsumura, T. Inoue, W. S. Chung, S. Hirota, and T. Matsuo, Bioconjugate Chem., 2015, 26, 537.

    Article  CAS  Google Scholar 

  41. M. Danko, J. Kollár, M. Cigán, Š. Chmela, and P Hrdlovic, Dyes Pigm., 2018, 153, 189.

    Article  CAS  Google Scholar 

  42. A. J. Howarth, M. B. Majewski, and M. O. Wolf, Coord. Chem. Rev., 2015, 282-283, 139.

    Article  Google Scholar 

  43. X. Cheng, H. Jia, T. Long, J. Feng, J. Qin, and Z. Li, Chem. Commun., 2011, 47, 11978.

    Article  CAS  Google Scholar 

  44. M. Üçüncü and M. Emrullahoglu, Chem. Commun., 2014, 50, 5884.

    Article  Google Scholar 

  45. Y. Wang, J. C. Xia, J. Han, X. Bao, Y. Y. Li, X. Tang, L. Ni, L. Wang, and M. M. Gao, Talanta, 2016, 16, 847.

    Article  Google Scholar 

  46. Y. Yang, C. Y. Gao, J. Chen, N. Zhang, and D. W. Dong, Anal. Methods, 2016, 8, 805.

    Article  CAS  Google Scholar 

  47. Y. H. Yu, T T Shu, B. J. Yu, Y. Deng, C. Fu, Y. G. Gao, C. Z. Dong, and Y. B. Ruan, Sens. Actuators, B, 2018, 255, 3170.

    Article  CAS  Google Scholar 

  48. L. Y. Zong, C. Wang, Y. C. Song, Y. J. Xie, P. Zhang, Q. Peng, Q. Q. Li, and Z. Li, Sens. Actuators, B, 2017, 252, 1105.

    Article  CAS  Google Scholar 

  49. R. V. Rathod, S. Bera, M. Singh, and D. Mondai, RSC Adv., 2016, 6, 34608.

    Article  CAS  Google Scholar 

  50. J. W. Yoon, M. J. Chang, S. Hong, and M. H. Lee, Tetrahedron Lett., 2017, 58, 3887.

    Article  CAS  Google Scholar 

  51. Y. C. Li, X. J. Han, and Y. Song, RSC Adv., 2017, 7, 20537.

    Article  CAS  Google Scholar 

  52. H. S. Kumbhar, B. L. Gadilohar, and G. S. Shankarling, Sens. Actuators, B, 2016, 222, 35.

    Article  CAS  Google Scholar 

  53. C. J. Wu, J. B. Wang, J. J. Shen, C. Y. Zhang, Z. Y. Wu, and H. W. Zhou, Tetrahedron, 2017, 73, 5715.

    Article  CAS  Google Scholar 

  54. Y. W. Ma, T H. Leng, Y. R. Qu, C. Y. Wang, Y. J. Shen, and W. H. Zhu, Tetrahedron, 2017, 73, 14.

    Article  CAS  Google Scholar 

  55. G. K. Patra, R. Chandra, A. Ghorai, and K. K. Shrivas, Inorg. Chim. Acta, 2017, 462, 315.

    Article  CAS  Google Scholar 

  56. S. Y. Lee and C. Kim, Inorg. Chem. Commun., 2017, 77, 6.

    Article  CAS  Google Scholar 

  57. X. Wang, W. Shi, L. Feng, J. C. Ma, Y. Q. Li, X. J. Kong, Y. B. Chen, Y. H. Hui, and Z. F. Xie, Inorg. Chem. Commun., 2017, 79, 50.

    Article  CAS  Google Scholar 

  58. J. B. Wang and Q. S. Zong, Sens. Actuators, B, 2015, 216, 572.

    Article  CAS  Google Scholar 

  59. J. B. Li, S. Chen, P. Zhang, Z. Wang, G. K. Long, R. Ganguly, Y. X. Li, and Q. C. Zhang, Chem. Asian J., 2016, 11, 136.

    Article  CAS  PubMed  Google Scholar 

  60. Y. Feng, S. Q. Li, D. X. Li, Q. Wang, P. Ning, M. Chen, X. H. Tian, and X. Wang, Sens. Actuators, B, 2018, 254, 282.

    Article  CAS  Google Scholar 

  61. L. Yuan, W. Y. Lin, J. Z. Song, and Y. T. Yang, Chem. Commun., 2011, 47, 12691.

    Article  CAS  Google Scholar 

  62. Y. Zhao, H. Y. Li, Y. Y. Xue, Y. H. Ren, and T. H. Han, Sens. Actuators, B, 2017, 241, 335.

    Article  CAS  Google Scholar 

  63. G. Y. Li, Q. Lin, L. N. Ji, and H. Chao, J. Mater. Chem. B, 2014, 2, 7918.

    Article  CAS  PubMed  Google Scholar 

  64. G. Y. Li, Q. Lin, L. L. Sun, C. S. Feng, P. Y. Zhang, B. L. Yu, Y. Chen, Y. Wen, H. Wang, L. N. Ji, and H. Chao, Biomaterials, 2015, 53, 285.

    Article  PubMed  Google Scholar 

  65. S. Goswami, S. Paul, and A. Manna, Dalton Trans., 2013, 42, 10097.

    Article  CAS  PubMed  Google Scholar 

  66. S. Goswamia, S. Maitya, A. C. Maitya, and A. K. Das, Sens. Actuators, B, 2014, 204, 741.

    Article  Google Scholar 

  67. D. X. Li, X. Sun, J. M. Huang, Q. Wang, Y. Feng, M. Chen, X. M. Meng, M. Z. Zhu, and X. Wang, Dyes Pigm., 2016, 125, 185.

    Article  CAS  Google Scholar 

  68. B. Ritochvil, D. A. Zatko, and R. Markuszewski, Anal. Chem., 1966, 38, 770.

    Article  Google Scholar 

  69. A. F. Li, H. He, Y. B. Ruan, Z. C. Wen, J. S. Zhao, Q. J. Jiang, and Y. B. Jiang, Org. Biomol. Chem., 2009, 7, 193.

    Article  CAS  PubMed  Google Scholar 

  70. K. Mariappan, M. Alaparthi, G. Caple, V. Balasubramanian, M. M. Hoffman, M. Hudspeth, and A. G. Sykes, Inorg. Chem., 2014, 53, 2953.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank National Natural Science Foundation of China (No. 21708015) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yibin Ruan or Yanhua Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, T., Deng, X., Dong, C. et al. Diaminomaleonitrile-based Fluorophores as Highly Selective Sensing Platform for Cu2+. ANAL. SCI. 35, 987–993 (2019). https://doi.org/10.2116/analsci.19P117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P117

Keywords

Navigation