Skip to main content
Log in

Enhanced Mimetic Enzyme Activity of Phosphorylated Porphyrin Nanocomposite Induced by Localized Surface Plasmon Resonance for Colorimetric Assay

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Plasmon-enhanced light harvesting has been of great interest to enhance the catalytic efficiency of some composites or hybrids. The enhanced peroxidase-like activity of phosphorylated iron(III) porphyrin (TPPFe(III))-based nanocomposite, induced by localized surface plasmon resonance for a colorimetric assay, was developed in this study. Firstly, a phosphate group modification strategy was adopted to synthesize water-soluble iron(III) porphyrin materials. Then, the assynthesized TPPFe(III) was covalently attached to core-shell gold nanorods (GNRs), GNR@Au2S/AuAgS, to form TPPFe(III)-GNR@Au2S/AuAgS nanocomposite, which shows greatly enhanced peroxidase-like activity compared to TPPFe(III). A mechanism for the enhanced peroxidase-like activity of TPPFe(III)-GNR@Au2S/AuAgS was proposed, which results from a synergic effect of hot electrons excited by localized surface plasmon resonance and photogenerated electrons of the TPPFe(III), verified by experiments. Furthermore, a fast colorimetric assay for the detection of H2O2 and glucose was established based on the unique property of TPPFe(III)-GNR@Au2S/AuAgS. This colorimetric assay was applied to determine practical human serum samples; satisfactory results demonstrate this method has high accuracy. The present study would not only provide some insights into the mechanism of plasmon-activated enzyme-like reactions, but also offer new strategies for improving the catalytic activity of a mimetic enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shoda, H. Uyama, J. Kadokawa, S. Kimura, and S. Kobayashi, Chem. Rev., 2016, 116, 2307.

    Article  CAS  PubMed  Google Scholar 

  2. Y. H. Lin, J. S. Ren, and X. G. Qu, Acc. Chem. Res., 2014, 47, 1097.

    Article  CAS  PubMed  Google Scholar 

  3. T. R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, and V. Artero, Coord. Chem. Rev., 2014, 270, 127.

    Article  Google Scholar 

  4. J. Odo, M. Inoguchi, S. Ohira, S. Tsukikawa, M. Aramaki, S. Matsuhama, M. Taito, and A. Takayama, Anal. Sci., 2013, 29, 1041.

    Article  CAS  PubMed  Google Scholar 

  5. E. Kuah, S. Toh, J. Yee, Q. Ma, and Z. Q. Gao, Chem. Eur. J., 2016, 22, 8404.

    Article  CAS  PubMed  Google Scholar 

  6. Q. Luan, N. Gan, Y. T. Cao, and T.H. Li, J. Agric. Food Chem., 2017, 65, 5731.

    Article  CAS  PubMed  Google Scholar 

  7. Q. Zhang, S. Chen, H. Wang, and H. Yu, ACS Appl. Mater. Interfaces, 2018, 10, 8666.

    Article  CAS  PubMed  Google Scholar 

  8. C. Sun, Z. Huang, L. Liu, M. Li, and H. Zheng, Anal. Sci., 2018, 34, 933.

    Article  CAS  PubMed  Google Scholar 

  9. Q. Y. Liu, P. P. Chen, Z. Xu, M. M. Chen, Y. A. Ding, K. Yue, and J. Xu, Sens. Actuators, B, 2017, 251, 339.

    Article  CAS  Google Scholar 

  10. Q. L. Zou, M. Abbas, L. Y. Zhao, S. K. Li, G. Z. Shen, and X. H. Yan, J. Am. Chem. Soc., 2017, 139, 1921.

    Article  CAS  PubMed  Google Scholar 

  11. F. Doctorovich, D. E. Bikiel, J. Pellegrino, S. A. Suarez, and M. A. Marti, Acc. Chem. Res., 2014, 47, 2907.

    Article  CAS  PubMed  Google Scholar 

  12. G. Huang, Y. Liu, J. L. Cai, X. F Chen, S. K. Zhao, Y. A. Guo, S. J. Wei, and X. Li, Appl. Surf. Sci., 2017, 402, 436.

    Article  CAS  Google Scholar 

  13. A. Hayat, W. Haider, Y. Raza, and J. L. Marty, Talanta, 2015, 143, 157.

    Article  CAS  PubMed  Google Scholar 

  14. J. B. Liu, X. N. Hu, S. Hou, T Wen, W. Q. Liu, X. Zhu, and X. C. Wu, Chem. Commun., 2011, 47, 10981.

    Article  CAS  Google Scholar 

  15. K. Werner, S. Mohr, M. Schwarz, T. Xu, M. Amende, T. Dopper, A. Gorling, and J. Libuda, J. Phys. Chem. Lett., 2016, 7, 555.

    Article  CAS  PubMed  Google Scholar 

  16. V. N. Sivkov, G. S. Zabrodina, S. V. Nekipelov, O. V. Petrova, E. A. Shchupak, D. V. Vyalikh, and S. L. Molodtsov, Macroheterocycles, 2011, 4, 213.

    Article  CAS  Google Scholar 

  17. Y. F. Zhou, X. L. Huang, W. J. Zhang, Y. W. Ji, R. Chen, and Y. H. Xiong, Biosens. Bioelectron., 2018, 102, 9.

    Article  CAS  PubMed  Google Scholar 

  18. Q. Y. Liu, Y. Y. Ding, Y. T. Yang, L. Y. Zhang, L. F. Sun, P. P. Chen, and C. Gao, Mater. Sci. Eng., C, 2016, 59, 445.

    Article  CAS  Google Scholar 

  19. Y. Sun, Y. Wang, J. Li, C. Ding, Y. Lin, W. Sun, and C. Luo, Talanta, 2017, 174, 809.

    Article  CAS  PubMed  Google Scholar 

  20. C. Ehli, G. M. A. Rahman, N. Jux, D. Balbinot, D. M. Guldi, F. Paolucci, M. Marcaccio, D. Paolucci, M. Melle- Franco, F. Zerbetto, S. Campidelli, and M. Prato, J. Am. Chem. Soc., 2006, 128, 11222.

    Article  CAS  PubMed  Google Scholar 

  21. X. M. Hu, M. H. Ronne, S. U. Pedersen, T. Skrydstrup, and K. Daasbjerg, Angew. Chem., Int. Ed., 2017, 56, 6468.

    Article  CAS  Google Scholar 

  22. M. Nasir, M. H. Nawaz, U. Latif, M. Yaqub, A. Hayat, and A. Rahim, Microchim. Acta, 2017, 184, 323.

    Article  CAS  Google Scholar 

  23. P. F. Zhan, Z. G. Wang, N. Li, and B. Q. Ding, ACS Catalysis, 2015, 5, 1489.

    Article  CAS  Google Scholar 

  24. C. F. Tan, A. Zing, Z. H. Chen, C. H. Liow, H. T. Phan, H. R. Tan, Q. H. Xu, and G. W. Ho, ACS Nano, 2018, 12, 4512.

    Article  CAS  PubMed  Google Scholar 

  25. G. Y. Yao, Q. L. Liu, and Z. Y. Zhao, Catalysts, 2018, 8, 236.

    Article  Google Scholar 

  26. C. Wang, Y. Shi, Y. Y. Dan, X. G. Nie, J. Li, and X. H. Xia, Chem. Eur. J., 2017, 23, 6717.

    Article  CAS  PubMed  Google Scholar 

  27. K. M. Mayer and J. H. Hafner, Chem. Rev., 2011, 111, 3828.

    Article  CAS  PubMed  Google Scholar 

  28. T. Kawawaki, N. Shinjo, and T. Tatsuma, Anal. Sci., 2016, 32, 271.

    Article  CAS  PubMed  Google Scholar 

  29. G. Cappi, F. M. Spiga, Y. Moncada, A. Ferretti, M. Beyeler, M. Bianchessi, L. Decosterd, T. Buclin, and C. Guiducci, Anal. Chem., 2015, 87, 5278.

    Article  CAS  PubMed  Google Scholar 

  30. X. J. Liu, Q. Q. Zhang, Y. Tu, W. F. Zhao, and H. W. Gai, Anal. Chem., 2013, 85, 11851.

    Article  CAS  PubMed  Google Scholar 

  31. Q. Q. Huang, S. Hu, J. Zhuang, and X. Wang, Chem. Eur. J., 2012, 18, 15283.

    Article  CAS  PubMed  Google Scholar 

  32. M. M. Rahman, S. H. Im, and J. J. Lee, Nanoscale, 2016, 8, 7769.

    Article  CAS  PubMed  Google Scholar 

  33. Y. Shi, J. Wang, C. Wang, T. T. Zhai, W. J. Bao, J. J. Xu, X. H. Xia, and H. Y. Chen, J. Am. Chem. Soc., 2015, 137, 7365.

    Article  CAS  PubMed  Google Scholar 

  34. H. W. Huang, S. W. Huang, X. Y. Liu, Y. L. Zeng, X. Y. Yu, B. Liao, and Y. Chen, Biosens. Bioelectron., 2009, 24, 3025.

    Article  CAS  PubMed  Google Scholar 

  35. H. W. Huang, X. Y. Liu, Y. L. Zeng, X. Y. Yu, B. Liao, P. G. Yi, and P. K. Chu, Biomaterials, 2009, 30, 5622.

    Article  CAS  PubMed  Google Scholar 

  36. H. W. Huang, C. T. Qu, X. Y. Liu, S. W. Huang, Z. J. Xu, B. Liao, Y. L. Zeng, and P. K. Chu, ACS Appl. Mater. Interfaces, 2011, 3, 183.

    Article  CAS  PubMed  Google Scholar 

  37. A. D. Adler, F. R. Longo, F. Kampas, and J. Kim, J. Inorg. Nucl. Chem., 1970, 32, 2443.

    Article  CAS  Google Scholar 

  38. R. Berrino, S. Cacchi, G. Fabrizi, A. Goggiamani, and P. Stabile, Org. Biomol. Chem., 2010, 8, 4518.

    Article  CAS  PubMed  Google Scholar 

  39. I. Sigal and F. H. Westheimer, J. Am. Chem. Soc., 1979, 101, 752.

    Article  CAS  Google Scholar 

  40. N. R. Jana, L. Gearheart, S. O. Obare, and C. J. Murphy, Langmuir, 2002, 18, 922.

    Article  CAS  Google Scholar 

  41. C. Heise and F. F. Bier, in “Immobilisation of DNA on Chips Ii”, ed. C. Wittmann, 2005, Vol. 261, 1–25.

    CAS  Google Scholar 

  42. Q. Zhao, S. N. Chen, H. W. Huang, L. Y. Zhang, L. Q. Wang, F. P. Liu, J. Chen, Y. L. Zeng, and P. K. Chu, Analyst, 2014, 139, 1498.

    Article  CAS  PubMed  Google Scholar 

  43. D. Cossa, C. Garnier, R. Buscail, F. Elbaz-Poulichet, N. Mikac, N. Patel-Sorrentino, E. Tessier, S. Rigaud, V. Lenoble, and C. Gobeil, Biogeochemistry, 2014, 119, 35.

    Article  CAS  Google Scholar 

  44. S. Unser, I. Bruzas, J. He, and L. Sagle, Sensors, 2015, 15, 15684.

    Article  PubMed  PubMed Central  Google Scholar 

  45. G. F. Manbeck and E. Fujita, J. Porphyrins Phthalocyanines, 2015, 19, 45.

    Article  CAS  Google Scholar 

  46. A. Molinari, A. Maldotti, R. Amadelli, A. Sgobino, and V. Carassiti, Inorg. Chim. Acta, 1998, 272, 197.

    Article  CAS  Google Scholar 

  47. A. E. Giannakas, M. Antonopoulou, C. Daikopoulos, Y. Deligiannakis, and I. Konstantinou, Appl. Catal. B, 2016, 184, 44.

    Article  CAS  Google Scholar 

  48. J. Khanderi, R. C. Hoffmann, J. Engstler, J. J. Schneider, J. Arras, P. Claus, and G. Cherkashinin, Chem. Eur. J., 2010, 16, 2300.

    Article  CAS  PubMed  Google Scholar 

  49. S. Yamazoe, K. Teramura, Y. Hitomi, T. Shishido, and T. Tanaka, J. Phy. Chem. C, 2007, 111, 14189.

    Article  CAS  Google Scholar 

  50. S. G. dos Santos, M. B. A. Varesche, M. Zaiat, and E. Foresti, Environ. Eng. Sci., 2004, 21, 313.

    Article  Google Scholar 

  51. J. Sun, X. H. Dai, Q. L. Wang, Y. T. Pan, and B. J. Ni, Sci. Rep., 2016, 6, 35312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (21675049, 21602054), and supported by Hunan Provincial Innovation Foundation for Postgraduate (CX2017B621).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaichun Zhou or Haowen Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Tan, F., Xie, X. et al. Enhanced Mimetic Enzyme Activity of Phosphorylated Porphyrin Nanocomposite Induced by Localized Surface Plasmon Resonance for Colorimetric Assay. ANAL. SCI. 35, 691–699 (2019). https://doi.org/10.2116/analsci.19P004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P004

Keywords

Navigation