Skip to main content
Log in

Arachidonic Acid-Induced Channel- and Carrier-Type Ion Transport across Planar Bilayer Lipid Membranes

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Transmembrane ion transport by arachidonic acid (AA) through bilayer lipid membranes (BLMs) was investigated by means of electrochemical measurements to provide a basis for designing a sensor membrane. We found that AA induces a channel-type current, in addition to a carrier-type current, across planar BLMs. A linear relation between the logarithmic value of the AA concentration and the current responses (given as integrated currents) was observed for a carrier-type current, while a sigmoid relation was found for a channel-type current. Although AA transports Na+, Ca2+ and Mg2+ and exhibits ion selectivity between Na+ and Mg2+ for the carrier-type current, ion transport for the channel-type current was non-selective. It was found that ion transport via the channel mechanism occurs frequently for AA, while channel-type currents were only occasionally observed for γ-linolenic acid and prostaglandin D2. No channel-type currents were induced by other fatty acids (oleic, linoleic, stearic, myristic, eicosapentanoic and docosahexanoic acids) and metabolites of AA (12-HETE and 5-HETE). The carrier-type ion transport occurs selectively to these compounds if the concentration is below 1.0 µM. These results suggest that AA selectively facilitates an ion flux through the BLMs, generating channel-type and/or carrier-type currents, which can be used as a measure of the AA concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Shimizu and L. S. Wolfe, J. Neurochem., 1990, 55, 1.

    Article  CAS  Google Scholar 

  2. H. Katsuki and S. Okuda, Prog. Neurobiol., 1995, 46, 607.

    Article  CAS  Google Scholar 

  3. H. Meves, Prog. Neurobiol., 1994, 43, 175.

    Article  CAS  Google Scholar 

  4. B. Miller, M. Sarantis, S. F. Traynelis, and D. Attwell, Nature, 1992, 355, 722.

    Article  CAS  Google Scholar 

  5. D. Kim and D. E. Clapham, Science, 1989, 244, 1174.

    Article  CAS  Google Scholar 

  6. R. W. Ordway, J. V. Jr. Walsh, and J. J. Singer, Science, 1989, 244, 1176.

    Article  CAS  Google Scholar 

  7. L. C. McPhail, C. C. Clayton, and R. Snyderman, Science, 1984, 224, 622.

    Article  CAS  Google Scholar 

  8. Y. Nishizuka, FASEB J., 1995, 9, 484.

    Article  CAS  Google Scholar 

  9. F. Kamp and J. A. Hamilton, Biochemistry, 1993, 32, 11074.

    Article  CAS  Google Scholar 

  10. M.-L. Wu, C.-C. Chan, and M.-J. Su, Circ. Res., 2000, 86, e55.

    Article  CAS  Google Scholar 

  11. F. Kamp, D. Zakim, F. Zhang, N. Noy, and J. A. Hamilton, Biochemistry, 1995, 34, 11928.

    Article  CAS  Google Scholar 

  12. F. Kamp and J. A. Hamilton, Proc. Natl. Acad. Sci. USA, 1992, 89, 11367.

    Article  CAS  Google Scholar 

  13. Y. Zeng, X. Han, P. Schlesinger, and R. W. Gross, Biochemistry, 1998, 37, 9497.

    Article  CAS  Google Scholar 

  14. K. Utsumi, K. Nobori, and M. Miyahara, Cell Struct. Funct., 1985, 10, 177.

    Article  CAS  Google Scholar 

  15. T. J. Shuttleworth, J. Biol. Chem., 1996, 271, 21720.

    Article  CAS  Google Scholar 

  16. T. J. Shuttleworth and J. L. Thompson, J. Biol. Chem., 1998, 273, 32636.

    Article  CAS  Google Scholar 

  17. O. Mignen and T. J. Shuttleworth, J. Biol. Chem., 2000, 275, 9114.

    Article  CAS  Google Scholar 

  18. O. Mignen, J. L. Thompson, and T. J. Shuttleworth, J. Biol. Chem., 2001, 276, 35676.

    Article  CAS  Google Scholar 

  19. P. Schlieper and E. D. Robertis, Arch. Biochem. Biophys., 1977, 184, 204.

    Article  CAS  Google Scholar 

  20. D. B. Sawyer and O. S. Andersen, Biochim. Biophys. Acta, 1989, 987, 129.

    Article  CAS  Google Scholar 

  21. A. Anel, G. V. Richieri, and A. M. Kleinfeld, Biochemistry, 1993, 32, 530.

    Article  CAS  Google Scholar 

  22. M. Sugawara, A. Hirano, M. Rehák, J. Nakanishi, K. Kawai, H. Sato, and Y. Umezawa, Biosens. Bioelectron., 1997, 12, 425.

    Article  CAS  Google Scholar 

  23. M. Ptak, M. Egret-Charlier, A. Sanson, and O. Bouloussa, Biochim. Biophys. Acta, 1980, 600, 387.

    Article  CAS  Google Scholar 

  24. H. Sato, H. Hakamada, Y. Yamazaki, M. Uto, M. Sugawara, and Y. Umezawa, Biosens. Bioelectron., 1998, 13, 1035.

    Article  CAS  Google Scholar 

  25. P. Läuger, Science, 1972, 178, 24.

    Article  Google Scholar 

  26. G. Eisenman, S. M. Ciani, and G. Szabo, Fed. Proc., 1968, 27, 1289.

    CAS  PubMed  Google Scholar 

  27. G. Szabo, G. Eisenman, and S. Ciani, J. Membr. Biol., 1969, 1, 346.

    Article  CAS  Google Scholar 

  28. G. V. Richieri, R. T. Ogata, and A. M. Kleinfeld, J. Biol. Chem., 1992, 267, 23495.

    Article  CAS  Google Scholar 

  29. Y. Namatame, A. Hirano, H. Saitoh, and M. Sugawara, submitted.

  30. G. V. Richieri, M. F. Mescher, and A. M. Kleinfeld, J. Immunol., 1990, 144, 671.

    CAS  PubMed  Google Scholar 

  31. J. Gutknecht, J. Membr. Biol., 1988, 106, 83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Sugawara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, A., Namatame, Y., Wakaizumi, E. et al. Arachidonic Acid-Induced Channel- and Carrier-Type Ion Transport across Planar Bilayer Lipid Membranes. ANAL. SCI. 19, 191–197 (2003). https://doi.org/10.2116/analsci.19.191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19.191

Navigation