Skip to main content
Log in

Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Microfluidic devices have emerged as a new cell culture tool, which can mimic the structure and physiology of living human organs. However, no standardized culture method for a microfluidic device has yet been established. Here, we describe the effects of various conditions on cell proliferation in a microchannel with a depth smaller than 100 μm. Primary endothelial cell proliferation was suppressed with a decrease in the culture medium volume per cell culture area. Moreover, cell growth was compared with or without medium flow, and the optimum culture condition was determined to be 1 μL/h flow in a 65-μm-deep microchannel. In addition, glucose consumption was greater under fluidic conditions than under static conditions, and the ability of tumor (HeLa) cells to convert glucose into lactate appeared to be higher in a static culture than that in a fluidic culture. Overall, our results will serve as a useful guide for designing a microfluidic cell culture platform in a channel smaller than 100 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sato, N. Sasaki, M. Ato, S. Hirakawa, K. Sato, and K. Sato, PLoS One, 2015, 10, e0137301

    Article  PubMed  PubMed Central  Google Scholar 

  2. K. Sato, M. Nakajima, S. Tokuda, and A. Ogawa, Anal. Sci., 2016, 32, 1217.

    Article  CAS  PubMed  Google Scholar 

  3. K. Sato and K. Sato, Anal. Sci., 2018, 34, 755.

    Article  CAS  PubMed  Google Scholar 

  4. S. Lee, J. Ko, D. Park, S. R. Lee, M. Chung, Y. Lee, and N. L. Jeon, Lab Chip, 2018, 18, 2686.

    Article  CAS  PubMed  Google Scholar 

  5. B. Sebastian and P. S. Dittrich, Annu. Rev. Fluid Mech., 2018, 50, 483.

    Article  Google Scholar 

  6. J. Zhang, X. Wei, R. Zeng, F. Xu, and X. Li, Future Sci. OA, 2017, 3, FSO187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. Liu, E. Gill, and Y. Y. Shery Huang, Future Sci. OA, 2017, 3, FSO173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. B. Shrirao, F. H. Kung, A. Omelchenko, R. S. Schloss, N. N. Boustany, J. D. Zahn, M. L. Yarmush, and B. L. Firestein, Biotechnol. Bioeng., 2018, 115, 815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Rothbauer, H. Zirath, and P. Ertl, Lab Chip, 2018, 18, 249.

    Article  CAS  PubMed  Google Scholar 

  10. H. Kimura, Y. Sakai, and T. Fujii, Drug Metab. Pharmacokinet., 2018, 33, 43.

    Article  CAS  PubMed  Google Scholar 

  11. A. U. R. Aziz, C. Geng, M. Fu, X. Yu, K. Qin, and B. Liu, Bioengineering (Basel), 2017, 4, E39.

    Article  Google Scholar 

  12. B. Y. Zhang, A. Korolj, B. F. L. Lai, and M. Radisic, Nat. Rev. Mater., 2018, 3, 257.

    Article  Google Scholar 

  13. S. Ishida, Drug Metab. Pharmacokinet., 2018, 33, 49.

    Article  CAS  PubMed  Google Scholar 

  14. S. J. Hachey and C. C. W. Hughes, Lab Chip, 2018, 18, 2893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Bein, W. Shin, S. Jalili-Firoozinezhad, M. H. Park, A. Sontheimer-Phelps, A. Tovaglieri, A. Chalkiadaki, H. J. Kim, and D. E. Ingber, Cell Mol. Gastroenterol. Hepatol., 2018, 5, 659.

    Article  PubMed  PubMed Central  Google Scholar 

  16. R. Prantil-Baun, R. Novak, D. Das, M. R. Somayaji, A. Przekwas, and D. E. Ingber, Annu. Rev. Pharmacol. Toxicol., 2018, 58, 37.

    Article  CAS  PubMed  Google Scholar 

  17. H. Yu, C. M. Alexander, and D. J. Beebe, Lab Chip, 2007, 7, 726.

    Article  CAS  PubMed  Google Scholar 

  18. A. L. Paguirigan and D. J. Beebe, Integr. Biol. (Camb), 2009, 1, 182.

    Article  CAS  PubMed  Google Scholar 

  19. X. Su, A. B. Theberge, C. T. January, and D. J. Beebe, Anal. Chem., 2013, 85, 1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Tanaka, Y. Kikukawa, K. Sato, Y. Sugh, and T. Kitamori, Anal. Sci., 2007, 23, 261.

    Article  PubMed  Google Scholar 

  21. K. Jang, K. Sato, K. Mawatari, T. Konno, K. Ishihara, and T. Kitamori, Biomaterials, 2009, 30, 1413.

    Article  CAS  PubMed  Google Scholar 

  22. N. Sasaki, M. Shinjo, S. Hirakawa, M. Nishinaka, Y. Tanaka, K. Mawatari, T. Kitamori, and K. Sato, Electrophoresis, 2012, 33, 1729.

    Article  CAS  PubMed  Google Scholar 

  23. T. Sakai and Y. Hosoyamada, J. Physiol. Sci, 2013, 63, 319.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Y. Ishigaki and K. Sato, Micromachines, 2018, 9, 272.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Y. Imura, Y. Asano, K. Sato, and E. Yoshimura, Anal. Sci., 2009, 25, 1403.

    Article  CAS  PubMed  Google Scholar 

  26. J. W. Posakony, J. M. England, and G. Attardi, J. Cell Biol., 1977, 74, 468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. G. M. Cooper, “The Cell: A. Molecular Approach”, 2nd ed., 2000, Chap. 14, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  28. T. Isono, T. Chano, A. Kitamura, and T. Yuasa, PLoS One, 2014, 9, e96168

    Article  PubMed  PubMed Central  Google Scholar 

  29. B. C. Mulukutla, S. Khan, A. Lange, and W. S. Hu, Trends Biotechnol., 2010, 28, 476.

    Article  CAS  PubMed  Google Scholar 

  30. C. Altamirano, J. Berrios, M. Vergara, and S. Becerra, Electron J. Biotechn., 2013, 16, fulltext-2.

  31. L. Borsi, G. Allemanni, B. Gaggero, and L. Zardi, Int. J. Cancer, 1996, 66, 632.

    Article  CAS  PubMed  Google Scholar 

  32. C. R. Kruse, M. Singh, S. Targosinski, I. Sinha, J. A. Sorensen, E. Eriksson, and K. Nuutila, Wound Repair Regen., 2017, 25, 260.

    Article  PubMed  Google Scholar 

  33. M. V. Liberti and J. W. Locasale, Trends Biochem. Sci., 2016, 41, 211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Banyu Foundation Research Grant, the Science Research Promotion Fund, Suzuken Memorial Foundation, Shiseido Female Researcher Science Grant, Koyanagi Foundation Research Grant, and a Grant-in- Aid for Scientific Research (Japan Society for the Promotion of Science, KAKENHI; Grant Nos. 25600065 and 16H04170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kae Sato.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K., Sato, M., Yokoyama, M. et al. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel. ANAL. SCI. 35, 49–56 (2019). https://doi.org/10.2116/analsci.18SDP04

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18SDP04

Keywords

Navigation