Skip to main content
Log in

Stable Isotope Composition of Metal Elements in Biological Samples as Tracers for Element Metabolism

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Stable isotope composition varies due to different reactivity or mobility among the isotopes. Various pioneering studies revealed that isotope fractionation is common for many elements, and it is now widely recognized that the stable isotope compositions of biometals can be used as new tracers for element metabolism. In this review, we summarize the recently published isotope compositions of iron (Fe), copper (Cu), zinc (Zn), and calcium (Ca) in various biological samples, including tissues from plants, animals, and humans. Discussions were carried out with respect to age, sex, organ, and the presence or absence of particular diseases for animals and humans. For Fe and Cu isotopes, changes in oxidation states generate large isotopic fractionation through the metabolism of those elements. Isotope composition of Zn greatly fractionates among tissues even without changes in oxidation state. Isotopic composition of Ca is a powerful tracer for the metabolism of Ca in bones. The review results suggest that the stable isotope compositions of the biometals can be used as effective markers for diagnostics of various kinds of diseases related to metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Holt, J. Y. Uriu-Adams, and C. L. Keen, in “Present Knowledge in Nutrition”, ed. J. W. Erdman Jr., I. A. Macdonald, and S. H. Zeisel, 2012, Chap. 34, ILSI Press, 521–539.

  2. S. L. Volpe, in “Present Knowledge in Nutrition”, ed. J. W. Erdman Jr., I. A. Macdonald, and S. H. Zeisel, 2012, Chap. 30, ILSI Press, 459–474.

  3. H. Haraguchi, J. Anal. At. Spectrom., 2004, 19, 5.

    Article  CAS  Google Scholar 

  4. H. Haraguchi, in “Metallomics; Recent Analytical Techniques and Selected Applications’”, ed. Y. Ogura and T. Hirata, 2017, Springer, 3–39.

  5. H. G. Preuss and D. L. Clouatre, in “Present Knowledge in Nutrition”, ed. J. W. Erdman Jr., I. A. Macdonald, and S. H. Zeisel, 2012, Chap. 31, ILSI Press, 475–492.

  6. C. M. Weaver, in “Present Knowledge in Nutrition”, ed, J. W. Erdman Jr., I. A. Macdonald, and S. H. Zeisel, 2012, Chap. 28, ILSI Press, 434–446.

  7. Y. Mawani and C. Orvig, in “Bioinorganic Medicinal Chemistry’”, ed. E. Alessio, 2011, Chap. 11, WILEY-VCH Verlag GmbH & Co. KGaA, 307–350.

  8. V. Mudgal, N. Madaan, A. Mudgal, R. B. Singh, and S. Mishra, Open Nutraceuticals J., 2010, 3, 94.

    CAS  Google Scholar 

  9. B. L. Beard, C. M. Johnson, L. Cox, H. Sun, K. H. Nealson, and C. Aguilar, Science, 1999, 285, 1889.

    Article  CAS  PubMed  Google Scholar 

  10. C. M. Johnson, J. L. Skulan, B. L. Beard, H. Sun, K. H. Nealson, and P. S. Braterman, EPSL, 2002, 195, 141.

    Article  CAS  Google Scholar 

  11. X. K. Zhu, Y. Guo, R. J. P. Williams, R. K. O'Nions, A. Matthews, N. S. Belshaw, G. W. Canters, E. C. de Waal, U. Weser, B. K. Burgess, and B. Salvato, EPSL, 2002, 200, 47.

    Article  CAS  Google Scholar 

  12. J. Bigeleisen and M. G. Mayer, J. Chem. Phys., 1947, 15, 261.

    Article  CAS  Google Scholar 

  13. H. C. Urey, J. Chem. Soc., 1947, 562.

    Google Scholar 

  14. M. Tanimizu, Y. Sohrin, and T. Hirata, Anal. Bioanal. Chem., 2013, 405, 2771.

    Article  CAS  PubMed  Google Scholar 

  15. T. Walczyk and F. von Blanckenburg, Science, 2002, 295, 2065.

    Article  CAS  PubMed  Google Scholar 

  16. M. Guelke and F. von Blanckenburg, Environ. Sci. Technol., 2007, 41, 1896.

    Article  CAS  PubMed  Google Scholar 

  17. K. Hotz, H. Augsburgerb, and T. Walczyk, J. Anal. At. Spectrom., 2011, 26, 1347.

    Article  CAS  Google Scholar 

  18. K. Jaouen, M-L. Pons, and V. Balter, EPSL, 2013a, 374, 164.

    Article  CAS  Google Scholar 

  19. V. Balter, A. Lamboux, A. Zazzo, P. Télouk, Y. Leverrier, J. Marvel, A. P. Moloney, F. J. Monahan, O. Schmidt, and F. Albarède, Metallomics, 2013, 5, 1470.

    Article  CAS  PubMed  Google Scholar 

  20. T. Ohno, A. Shinohara, I. Kohge, M. Chiba, and T. Hirata, Anal. Sci., 2004, 20, 617.

    Article  CAS  PubMed  Google Scholar 

  21. T. Walczyk and F. von Blanckenburg, Int. J. Mass Spectrom., 2005, 242, 117.

    Article  CAS  Google Scholar 

  22. P-A. Krayenbuehl, T. Walczyk, R. Schoenberg, F. von Blanckenburg, and G. Schulthess, Blood, 2005, 105, 3812.

    Article  CAS  PubMed  Google Scholar 

  23. A. Stenberg, D. Malinovsky, B. Ohlander, H. Andren, W. Forsling, L. M. Engström, A. Wahlin, E. Engström, I. Rodushkin, and D. C. Baxter, J. Trace. Elem. Med. Biol., 2005, 19, 55.

    Article  CAS  PubMed  Google Scholar 

  24. F. Albarède, P. Télouk, A. Lamboux, K. Jaouen, and V. Balter, Metallomics, 2011, 3, 926.

    Article  PubMed  Google Scholar 

  25. K. Jaouen, V. Balter, E. Herrscher, A. Lamboux, P. Télouk, and F. Albarède, Am. J. Phys. Anthropol., 2012, 148, 334.

    Article  PubMed  Google Scholar 

  26. K. Hotz, P.-A. Krayenbuehl, and T. Walczyk, J. Biol. Inorg. Chem., 2012, 17, 301.

    Article  CAS  PubMed  Google Scholar 

  27. L. Van Heghe, E. Engström, I. Rodushkin, C. Cloquet, and F. Vanhaecke, J. Anal. At. Spectrom., 2012, 27, 1327.

    Article  Google Scholar 

  28. K. Hotz and T. Walczyk, J. Biol. Inorg. Chem., 2013, 18, 1.

    Article  CAS  PubMed  Google Scholar 

  29. L. Van Heghe, J. Delanghe, H. Van Vlierberghe, and F. Vanhaecke, Metallomics, 2013, 5, 1503.

    Article  PubMed  Google Scholar 

  30. K. Jaouen, M. Gibert, A. Lamboux, P. Télouk, F. Fourel, F. Albarède, A. N. Alekseev, E. Crubézy, and V. Balter, Metallomics, 2013b, 5, 1016.

    Article  CAS  PubMed  Google Scholar 

  31. L. Van Heghe, O. Deltombe, J. Delanghe, H. Depypere, and F. Vanhaecke, J. Anal. At. Spectrom., 2014, 29, 478.

    Article  Google Scholar 

  32. K. Jaouen and V. Balter, Am. J. Phys. Anthropol., 2014, 153, 280.

    Article  PubMed  Google Scholar 

  33. F. von Blanckenburg, M. Oelze, D. G. Schmid, K. van Zuilen, H. P. Gschwind, A. J. Slade, S. Stitah, D. Kaufmann, and P. Swart, Metallomics, 2014, 6, 2052.

    Article  Google Scholar 

  34. Y. Tanaka, K. Takata, T. Kawasaki, A. Shinohara, K. Ishikawa-Takata, and T. Hirata, in “Metallomics; Recent Analytical Techniques and Selected Applications”, ed. Y. Ogura and T. Hirata, 2017a, Chap. 12, Springer, 239–263.

  35. J. C. Cikomola, M. R. Flórez, M. Costas-Rodríguez, Y. Anoshkina, K. Vandepoele, P. B. Katchunga, A. S. Kishabongo, M. M. Speeckaert, F. Vanhaecke, and J. R. Delanghe, Metallomics, 2017, 9, 1142.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Anoshkina, M. Costas-Rodríguez, M. Speeckaert, W. Van Biesen, J. Delanghe, and F. Vanhaecke, Metallomics, 2017, 9, 517.

    Article  CAS  PubMed  Google Scholar 

  37. M. R. Flórez, Y. Anoshkina, M. Costas-Rodríguez, C. Grootaert, J. Van Camp, J. Delanghe, and F. Vanhaecke, J. Anal. At. Spectrom., 2017, 32, 1713.

    Article  Google Scholar 

  38. R. Yip, in “Present Knowledge in Nutrition”, ed. B. A. Bowman and R. M. Russell, 2002, Chap. 30, ILSI Press, 311–328.

  39. L. R. Zacharski, D. L. Ornstein, S. Woloshin, and L. M. Schwartz, Am. Heart J., 2000, 140, 98.

    Article  CAS  PubMed  Google Scholar 

  40. E. A. Liebold and B. Guo, Annu. Rev. Nutr., 1992, 12, 345.

    Article  Google Scholar 

  41. S. Abboud and D. J. Haile, J. Biol. Chem, 2000, 275, 19906.

    Article  CAS  PubMed  Google Scholar 

  42. D. M. Frazer, S. J. Wilkins, E. M. Becker, T. L. Murphy, C. D. Vulpe, A. T. McKie, and G. J. Anderson, Gut., 2003, 52, 340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. I. de Domenico, D. M. Ward, and J. Kaplan, J. Clin. Invest., 2007, 117, 1755.

    Article  PubMed  PubMed Central  Google Scholar 

  44. M. V. Verga Falzacappa, M. Vujic Spasic, R. Kessler, J. Stolte, M. W. Hentze, and M. U. Muckenthaler, Blood, 2007, 109, 353.

    Article  PubMed  Google Scholar 

  45. A. Pietrangelo, Hepatology, 2007, 46, 1291.

    Article  CAS  PubMed  Google Scholar 

  46. R. E. Fleming, M. C. Migas, X.Y. Zhou, J. Jiang, R. S. Britton, E. M. Brunt, S. Tomatsu, A. Waheed, B. R. Bacon, and W. S. Sly, PNAS, 1999, 96, 3143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C. Weinstein, F. Moynier, K. Wang, R. Paniello, J. Foriel, J. Catalano, and S. Pichat, Chem. Geol., 2011, 286, 266.

    CAS  Google Scholar 

  48. D. Jouvin, D. J. Weiss, T. F. M. Mason, M. N. Bravin, P. Louvat, F. Zhao, F. Ferec, P. Hinsinger, and M. F. Benedetti, Environ. Sci. Technol., 2012, 46, 2652.

    Article  CAS  PubMed  Google Scholar 

  49. J. U. Navarrete, D. M. Borrok, M. Viveros, and J. T. Ellzey, Geochim. Cosmochim. Acta, 2011, 75, 784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R. S. Ohgami, D. R. Campagna, A. McDonald, and M. D. Fleming, Blood, 2006, 108, 1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. Tennant, A. Rauk, and M. E. Wieser, Metallomics, 2017, 9, 1809.

    Article  CAS  PubMed  Google Scholar 

  52. J. R. Prohaska, in “Present Knowledge in Nutrition”, ed. J. W. Erdman Jr., I. A. Macdonald, and S. H. Zeisel, 2012, Chap. 35, ILSI Press, 540–553.

  53. M. Aramendía, L. Rello, M. Resano, and F. Vanhaecke, J. Anal. At. Spectrom., 2013, 28, 675.

    Article  Google Scholar 

  54. M. Costas-Rodríguez, Y. Anoshkina, S. Lauwens, H. Van Vlierberghe, J. Delanghe, and F. Vanhaecke, Metallomics, 2015, 7, 491.

    Article  PubMed  Google Scholar 

  55. V. Balter, A. Nogueira da Costa, V. P. Bondanese, K. Jaouen, A. Lamboux, S. Sangrajrang, N. Vincent, F. Fourel, P. Télouk, M. Gigou, C. Lécuyer, P. Srivatanakul, C. Bréchot, F. Albarède, and P. Hainaut, PNAS, 2015, 112, 982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. P. Télouk, A. Puisieux, T. Fujii, V. Balter, V. P. Bondanese, A.-P. Morel, G. Clapisson, A. Lamboux, and F. Albarède, Metallomics, 2015, 7, 299.

    Article  PubMed  Google Scholar 

  57. V. P. Bondanese, A. Lamboux, M. Simon, J. E. Lafont, E. Albalat, S. Pichat, J.-M. Vanacker, P. Télouk, V. Balter, P. Oger, and F. Albarède, Metallomics, 2016, 8, 1177.

    Article  CAS  PubMed  Google Scholar 

  58. J.-L. Cadiou, S. Pichat, V. P. Bondanese, A. Soulard, T. Fujii, F. Albarède, and P. Oger, Sci. Rep., 2017, 7, 44533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. C. Coulouarn, C. Derambure, G. Lefebvre, R. Daveau, M. Hiron, M. Scotte, A. François, M. Daveau, and J.-P. Salier, J. Hepatol., 2005, 42, 860.

    Article  CAS  PubMed  Google Scholar 

  60. M. R. Flórez, M. Costas-Rodríguez, C. Grootaert, J. Van Camp, and F. Vanhaecke, Anal. Bioanal. Chem., 2018, 410, 2385.

    Article  PubMed  Google Scholar 

  61. M. Valko, D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, and J. Telser, Int. J. Biochem. Cell Biol., 2007, 39, 44.

    Article  CAS  PubMed  Google Scholar 

  62. K. H. Brown, J. A. Rivera, Z. Bhutta, R. S. Gibson, J. C. King, B. Lönnerdal, M. T. Ruel, B. Sandtröm, E. Wasantwisut, and C. Hotz, FoodNutr. Bull., 2004, 25, S99

    Google Scholar 

  63. V. Balter, A. Zazzo, A. P. Moloney, F. Moynier, O. Schmidt, F. J. Monahan, and F. Albarède, Rapid Commun. Mass Spectrom., 2010, 24, 605.

    Article  CAS  PubMed  Google Scholar 

  64. D. J. Weiss, T. F. D. Mason, F. J. Zhao, G. J. D. Kirk, B. J. Coles, and M. S. A. Horstwood, New Phytologist, 2005, 165, 703.

    Article  CAS  PubMed  Google Scholar 

  65. F. Moynier, S. Pichat, M.-L. Pons, D. Fike, V. Balter, and F. Albarède, Chem. Geol., 2009, 267, 125.

    Article  CAS  Google Scholar 

  66. F. Moynier, T. Fujii, A. S. Shaw, and M. Le Borgne, Metallomics, 2013, 5, 693.

    Article  CAS  PubMed  Google Scholar 

  67. R. J. Cousins, Physiol. Rev., 1985, 65, 238.

    Article  CAS  PubMed  Google Scholar 

  68. A. A. Rehman, H. Ahsan, and F. H. Khan, J. Cell Physiol., 2013, 228, 1665.

    Article  CAS  PubMed  Google Scholar 

  69. N. Dimakis, M. J. Farooqi, E. S. Garza, and G. Bunker, J. Chem. Phys., 2008, 128, 115104.

    Article  PubMed  Google Scholar 

  70. T. Ohno, A. Shinohara, M. Chiba, and T. Hirata, Anal. Sci., 2005, 21, 425.

    Article  CAS  PubMed  Google Scholar 

  71. M. Costas-Rodríguez, L. Van Heghe, and F. Vanhaecke, Metallomics, 2014, 6, 139.

    Article  PubMed  Google Scholar 

  72. A. Büchl, C. J. Hawkesworth, K. V. Ragnarsdottir, and D. R. Brown, Geochem. Trans., 2008, 9, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  73. F. Larner, L. N. Woodley, S. Shousha, A. Moyes, E. Humphreys-Williams, S. Strekopytov, A. N. Halliday, M. Rehkämper, and R. C. Coombes, Metallomics, 2015, 7, 112.

    Article  CAS  PubMed  Google Scholar 

  74. S. Alam and S. L. Kelleher, Nutrients, 2012, 4, 875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. S. C. Manolagas, Endocr. Rev., 2000, 21, 115.

    CAS  PubMed  Google Scholar 

  76. J. Skulan, D. J. DePaolo, and T. Owens, Geochim. Cosmochim. Acta, 1997, 61, 2505.

    Article  CAS  Google Scholar 

  77. M. T. Clementz, P. Holden, and P. L. Koch, Int. J. Osteoarchaeol., 2003, 13, 29.

    Article  Google Scholar 

  78. J. Skulan and D. J. DePaolo, PNAS, 1999, 96, 13709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. T. Hirata, M. Tanoshima, A. Suga, Y. Tanaka, Y. Nagata, A. Shinohara, and M. Chiba, Anal. Sci., 2008, 24, 1501.

    Article  CAS  PubMed  Google Scholar 

  80. L. M. Reynard, G. M. Henderson, and R. E. M. Hedges, Geochim. Cosmochim. Acta, 2010, 74, 3735.

    Article  CAS  Google Scholar 

  81. J. L. L. Morgan, J. L. Skulan, G. W. Gordon, S. J. Romaniello, S. M. Smith, and A. D. Anbar, PNAS, 2012, 109, 9989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. M. B. Channon, G. W. Gordon, J. L. L. Morgan, J. L. Skulan, S. M. Smith, and A. D. Anbar, Bone, 2015, 77, 69.

    Article  CAS  PubMed  Google Scholar 

  83. J. Skulan, T. Bullen, A. D. Anbar, J. E. Puzas, L. Shackelford, A. LeBlanc, and S. M. Smith, Clin. Chem., 2007, 53, 1155.

    Article  CAS  PubMed  Google Scholar 

  84. A. Heuser and A. Eisenhauer, Bone, 2010, 46, 889.

    Article  CAS  PubMed  Google Scholar 

  85. G. W. Gordon, J. Monge, M. B. Channon, Q. Wu, J. L. Skulan, A. D. Anbar, and R. Fonseca, Leukemia, 2014, 28, 2112.

    Article  CAS  PubMed  Google Scholar 

  86. E. Terpos, G. Morgan, M. A. Dimopoulos, M. T. Drake, S. Lentzsch, N. Raje, O. Sezer, R. García-Sanz, K. Shimizu, I. Turesson, T. Reiman, A. Jurczyszyn, G. Merlini, A. Spencer, X. Leleu, M. Cavo, N. Munshi, S. V. Rajkumar, B. G. Durie, and G. D. Roodman, J. Clin. Oncol., 2013, 31, 2347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Y. Tanaka, N. Yajima, Y. Higuchi, H. Yamato, and T. Hirata, Metallomics, 2017b, 9, 1745.

    Article  CAS  PubMed  Google Scholar 

  88. N.-C. Chu, G. M. Henderson, N. S. Belshaw, and R. E. M. Hedges, Appl. Geochem., 2006, 21, 1656.

    Article  CAS  Google Scholar 

  89. K. Jaouen, P. Szpak, and M. P. Richards, PLoS ONE, 2016a, 11, e0152299.

    Article  PubMed  PubMed Central  Google Scholar 

  90. K. Jaouen, M. Beasley, M. Schoeninger, J.-J. Hublin, and M. P. Richards, Sci. Rep., 2016b, 6, 26281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. T. Fujii and F. Albarède, PLoS ONE, 2012, 7, e30726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. F. Albarède, P. Télouk, V. Balter, V. P. Bondanese, E. Albalat, P. Oger, P. Bonaventura, P. Miossec, and T. Fujii, Metallomics, 2016, 8, 1056.

    Article  PubMed  Google Scholar 

  93. F. Moynier and T. Fujii, Sci. Rep., 2017, 7, 44255.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Grant-in-Aid for Scientific Research to TH (A26247094) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ki Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, YK., Hirata, T. Stable Isotope Composition of Metal Elements in Biological Samples as Tracers for Element Metabolism. ANAL. SCI. 34, 645–655 (2018). https://doi.org/10.2116/analsci.18SBR02

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18SBR02

Keywords

Navigation