Skip to main content
Log in

Thermodynamic Studies on a Hydrogen Bonded Acidic 3,5-Bis(trifluoromethyl)phenol-functionalized Polymer as a Gas Chromatography Stationary Phase for Selectively Speciating Chemical Warfare Agents

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We describe for the first time hydrogen bonded acid (HBA) polymer, poly{methyl[3-(2-hydroxyl, 4,6-bistrifluoromethyl)- phenyl]propylsiloxane}, (DKAP), as stationary phase for gas chromatography (μGC) of organophosphate (OP), chemical warfare agent (CWA) surrogates, dimethylmethylphosphonate (DMMP), diisopropylmethylphosphonate (DIMP), diethylmethylphosphonate (DEMP), and trimethylphosphate (TMP), with high selectivity. Absorption of OPs to DKAP was one-to-several orders of magnitude higher relative to commercial polar, mid-polar, and nonpolar stationary phases. We also present for the first-time thermodynamic studies on the absorption of OP vapors and quantitative binding energy data for interactions with various stationary phases. These data help to identify the best pair of hetero-polar columns for a two-dimensional GC system, employing a nonpolar stationary phase as GC1 and DKAP as the GC2 stationary phase, for selective and rapid field detection of CWAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, T. Satake, and H. Suzuki, Anal. Sci., 2015, 31, 591.

    Article  CAS  PubMed  Google Scholar 

  2. A. T. Tu, J. Mass Spectrom. Soc. Jpn., 1996, 44, 293.

    Article  CAS  Google Scholar 

  3. K. Nakane, S. Shirai, Y. Saito, Y. Moriwake, I. Ueta, M. Inoue, and K. Jinno, Anal. Sci., 2011, 27, 811.

    Article  CAS  PubMed  Google Scholar 

  4. P. R. Lewis, R. P. Manginell, D. R. Adkins, R. J. Kottenstette, D. R. Wheeler, S. S. Sokolowski, D. E. Trudell, J. E. Byrnes, M. Okandan, J. M. Bauer, R. G. Manley, and G. C. Frye-Mason, IEEE Sensors, 2006, 6, 784.

    Article  Google Scholar 

  5. R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, J. Microelectromech. Syst., 2008, 17, 1396.

    Article  CAS  Google Scholar 

  6. X. Du, Z. Wang, J. Huang, S. Tao, X. Tang, and Y. Jiang, J. Mater. Sci., 2009, 44, 5872.

    Article  CAS  Google Scholar 

  7. R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, Sensors, 2011, 11, 6517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. P. Manginell, C. D. Mowry, A. S. Pimentel, M. A. Mangan, M. W. Moorman, E. S. Sparks, A. Allen, and K. E. Achyuthan, Anal. Sci., 2015, 31, 1183.

    Article  CAS  PubMed  Google Scholar 

  9. T. Murakami, Y. Iwamuro, S. Chinaka, N. Takayama, and T. Komatsu, Anal. Sci., 2015, 31, 1325.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Long, X. Du, Y. Wang, J. Zhao, H. Tai, X. Tang, and Y. Jiang, RSC Adv., 2014, 4, 59643.

    Article  CAS  Google Scholar 

  11. J. W. Grate, Chem. Rev., 2008, 108, 726.

    Article  CAS  PubMed  Google Scholar 

  12. M. Li, E. B. Myers, H. X. Tang, S. J. Aldridge, H. C. McCaig, J. J. Whiting, R. J. Simonson, N. S. Lewis, and M. L. Roukes, Nano Lett., 2010, 10, 3899.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Wang, X. Du, Y. Long, X. Tang, H. Tai, and Y. Jiang, Anal. Methods, 2014, 6, 1951.

    Article  Google Scholar 

  14. K. Miyabe, Anal. Sci., 2009, 25, 219.

    Article  CAS  PubMed  Google Scholar 

  15. V. R. Reid, J. A. Crank, D. W. Armstrong, and R. E. Synovec, J. Sep. Sci., 2008, 31, 3429.

    Article  CAS  PubMed  Google Scholar 

  16. T. G. Venkatesha, R. Viswanatha, Y. A. Nayaka, and B. K. Chethana, Chem. Eng. J., 2012, 198-199, 1.

    Article  Google Scholar 

  17. K. E. Achyuthan and D. G. Whitten, Comb. Chem. HTS, 2007, 10, 399.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. Defense Threat Reduction Agency under Interagency Order DTRA10027-9009, U.S. Defense Advanced Research Projects Agency Microsystems Technology Office under Micro Gas Analyzers Program, contract # 017040518, and by Sandia’s LDRD project # 199974. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Whiting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Read, D.H., Achyuthan, K.E., Fix, C.S. et al. Thermodynamic Studies on a Hydrogen Bonded Acidic 3,5-Bis(trifluoromethyl)phenol-functionalized Polymer as a Gas Chromatography Stationary Phase for Selectively Speciating Chemical Warfare Agents. ANAL. SCI. 35, 671–677 (2019). https://doi.org/10.2116/analsci.18P537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P537

Keywords

Navigation