Skip to main content
Log in

Flow Control-based 3D μPADs for Organophosphate Pesticide Detection

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Flow control-based paper devices have recently shown great potential for point-of-need analysis, since they allow for the easy operation of multi-step assays by minimizing user operation. In this work, a wax printing method was evaluated as a means to control liquid flow in 3D microfluidic paper-based analytical devices (μPADs). The resulting flow controlbased 3D μPADs were applied to determine paraoxon-ethyl as a typical organophosphate pesticide model system. The analytical procedure is as simple as applying a 200-μL sample solution, resulting in reproducible (relative standard deviation of colorimetric signals from 6 independently fabricated devices, 2.63%) colorimetric signals within 1 h of the assay time with the limit of detection (LOD) reaching 25.0 μg/L. Finally, results obtained for pesticide-spiked water samples analyzed by flow control-based 3D μPADs showed good agreement with those from a conventional HPLC analysis with UV detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Aktar, D. Sengupta, and A. Chowdhury, Interdisc Toxicol., 2009, 2, 1.

    Article  Google Scholar 

  2. A. Gahlaut, A. Gothwal, A. K. Chhillar, and V. Hooda, Open J. Appl. Biosens., 2012, 1, 1.

    Article  Google Scholar 

  3. B. K. Singh, Microbiology, 2009, 7, 156.

    CAS  PubMed  Google Scholar 

  4. D. Harshit, K. Charmy, and P. Nrupesh, Food Chem., 2017, 230, 448.

    Article  CAS  PubMed  Google Scholar 

  5. T.-T. Hu, C.-M. Lu, H. Li, Z.-X. Zhang, Y.-H. Zhao, and J. Li, Anal. Sci., 2017, 33, 1027.

    Article  CAS  PubMed  Google Scholar 

  6. N. I. P. Valente, S. Tarelho, A. L. Castro, A. Silvestre, and H. M. Teixeira, J. Forensic Leg. Med., 2015, 33, 28.

    Article  PubMed  Google Scholar 

  7. A. F. Danet, M. Badea, J. L. Marty, and H. Y. Aboul-Enein, Biopolymers, 2000, 57, 37.

    Article  CAS  PubMed  Google Scholar 

  8. G. A. Ibañez and G. M. Escandar, Sensors, 2011, 11, 11081.

    Article  PubMed  PubMed Central  Google Scholar 

  9. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Angew. Chem., Int. Ed. Engl., 2007, 46, 1318.

    Article  CAS  PubMed  Google Scholar 

  10. N. A. Meredith, C. Quinn, D. M. Cate, T. H. Reilly, J. Volckens, and C. S. Henry, Analyst, 2016, 141, 1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. Y. No, Y. A. Kima, Y. T. Lee, and H. S. Lee, Anal. Chim. Acta, 2007, 594, 37.

    Article  CAS  PubMed  Google Scholar 

  12. S. M. Z. Hossain, R. E. Luckham, A. M. Smith, J. M. Lebert, L. M. Davies, R. H. Pelton, C. D. M. Filipe, and J. D. Brennan, Anal. Chem., 2009, 81, 5474.

    Article  CAS  PubMed  Google Scholar 

  13. S. M. Z. Hossain, R. E. Luckham, M. J. McFadden, and J. D. Brennan, Anal. Chem., 2009, 81, 9055.

    Article  CAS  PubMed  Google Scholar 

  14. S. Jahanshahi-Anbuhi, P. Chavan, C. Sicard, V. Leung, S. M. Z. Hossain, R. Pelton, J. D. Brennan, and C. D. M. Filipe, Lab Chip, 2012, 12, 5079.

    Article  CAS  PubMed  Google Scholar 

  15. C. Sicard, C. Glen, B. Aubie, D. Wallace, S. Jahanshahi-Anbuhi, K. Pennings, G. T. Daigger, R. Pelton, J. D. Brennan, and C. D. M. Filipe, Water Res., 2015, 70, 360.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Wu, Y. Sun, F. Xiao, Z. Wu, and R. Yu, Talanta, 2017, 162, 174.

    Article  CAS  PubMed  Google Scholar 

  17. E. Fu and C. Downs, Lab Chip, 2017, 17, 614.

    Article  CAS  PubMed  Google Scholar 

  18. B. Lutz, T. Liang, E. Fu, S. Ramachandran, P. Kauffman, and P. Yager, Lap Chip, 2013, 13, 2840.

    Article  CAS  Google Scholar 

  19. I. Janga and S. Song, Lab Chip, 2015, 15, 3405.

    Article  Google Scholar 

  20. J. Park and J.-K. Park, Sens. Actuators, B, 2017, 246, 1049.

    Article  CAS  Google Scholar 

  21. H. Shibata, T. G. Henares, K. Yamada, K. Suzuki, and D. Citterio, Analyst, 2018, 143, 678.

    Article  CAS  PubMed  Google Scholar 

  22. K. Yamada, T. G. Henares, K. Suzuki, and D. Citterio, ACS Appl. Mater. Interfaces, 2015, 7, 24864.

    Article  CAS  PubMed  Google Scholar 

  23. D. Kim and A. E. Herr, Biomicrofluidics, 2013, 7, 1.

    Article  Google Scholar 

  24. R. Ahirwar, S. Bariar, A. Balakrishnana, and P. Nahar, RSC Adv., 2015, 5, 100077.

    Article  CAS  Google Scholar 

  25. J. D. Gu and D. F. Berry, Appl. Environ. Microbiol., 1991, 57, 2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. S. Blackburn, T. Bechtoldb, and P. Johnc, Color. Technol., 2009, 125, 193.

    Article  CAS  Google Scholar 

  27. A. W. Martinez, S. T. Phillips, and G. M. Whitesides, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 19606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Hong and W. Kim, Microfluid. Nanofluid., 2015, 19, 845.

    Article  Google Scholar 

  29. E. Carrilho, A. W. Martinez, and G. M. Whitesides, Anal. Chem., 2009, 81, 7091.

    Article  CAS  PubMed  Google Scholar 

  30. A. Shrivastava and V. B. Gupta, Chron. Young Sci., 2011, 2, 21.

    Article  Google Scholar 

  31. The Japan Food Chemical Research Foundation, http://db.ffcr.or.jp/front/pesticide_detail?id=50900, (accessed April 2018).

Download references

Acknowledgments

Q. T. H. gratefully acknowledges a scholarship from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Citterio.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Q.T., Shibata, H., Hiruta, Y. et al. Flow Control-based 3D μPADs for Organophosphate Pesticide Detection. ANAL. SCI. 35, 393–399 (2019). https://doi.org/10.2116/analsci.18P435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P435

Keywords

Navigation