Skip to main content
Log in

A Label-free and Universal Platform for the Construction of Various Logic Circuits Based on Graphene Oxide and G-Quadruplex Structure

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Due to structual polymorphism, excellent binding activity and functional significances in biological regulation, G-quadruplex has become the focus of research as an innovated module for analytical chemistry and biomedicine. Meanwhile, in the biosensor fields, new nanomaterial graphene oxide (GO) has also received extensive attention due to its brilliant physical and chemical properties. Herein, we propose a non-label and enzyme-free logic operation platform based on G-quadruplex structure and GO instead of any expensive modification. Taking advantage of the quenching ability of GO to AgNCs and the fluorescence enhancement of NMM (N-methylmesoporphyrin IX) mediated by the split G-quadruplex, a series of binary logic gates (AND, OR, INHIBIT, XOR) have been constructed and verified by biological experiments. Subsequently, two combinatorial logic gates were successfully realized conceptually on the basis of the same BGG platform, including half adder and half subtractor. Taken together, such a universal platform has great potential in applications, such as biocomputing, bio-imaging and disease diagnosis, which cultivate a new view for future biological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Qian, E. Winfree, and J. Brack, Nature, 2011, 475, 368.

    Article  CAS  PubMed  Google Scholar 

  2. P. Ball, “Chemistry Meets Computing”, 2000, 406, 118.

    CAS  Google Scholar 

  3. D. S. A Prasanna and U. Seiichi, Nat. Nanotech., 2007, 2, 399.

    Article  Google Scholar 

  4. A. S. Sadek, K. Nikolić, and M. Forshaw, Nanot, 2004, 15, 192.

    Article  CAS  Google Scholar 

  5. Z. Hu, J. Jian, Y. Hua, D. Yang, Y. Gao, J. You, Z. Wang, Y. Chang, K. Yuan, and Z. Bao, Sens. Actuators, B, 2018, 273, 559.

    Article  CAS  Google Scholar 

  6. S. Xu, H. Li, Y. Miao, Y. Liu, and E. Wang, Npg. Asia. Mater., 2013, 5, e76.

    Article  CAS  Google Scholar 

  7. H. Li, Y. Liu, S. Dong, and E. Wang, Npg. Asia. Mater., 2015, 7, 1009.

    Google Scholar 

  8. R. Orbach, F. Wang, O. Lioubashevski, R. D. Levine, F. Remacle, and I. Willner, Chem. Sci., 2014, 5, 3381.

    Article  CAS  Google Scholar 

  9. D. Fan, J. Zhu, Y. Liu, E. Wang, and S. Dong, Nanoscale, 2016, 8, 3834.

    Article  CAS  PubMed  Google Scholar 

  10. S. Zhang, K. Wang, C. Huang, Z. Li, T. Sun, and D. M. Han, Nanoscale, 2016, 8, 15681.

    Article  CAS  PubMed  Google Scholar 

  11. J. Zhu, L. Zhang, T. Li, S. Dong, and E. Wang, Adv. Mater., 2013, 25, 2440.

    Article  CAS  PubMed  Google Scholar 

  12. M. Wang, Z. Mao, T. S. Kang, C. Y. Wong, J. L. Mergny, C. H. Leung, and D. L. Ma, Chem. Sci., 2016, 7, 2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Lin, W. Gao, Z. Tian, C. Yang, L. Lu, J. L. Mergny, C. H. Leung, and D. L. Ma, Chem. Sci., 2015, 6, 4284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. C. H. Lu, A. Cecconello, and I. Willner, J. Am. Chem. Soc., 2016, 138, 5172.

    Article  CAS  PubMed  Google Scholar 

  15. Z. G. Wang, J. Elbaz, F. Remacle, R. D. Levine, and I. Willner, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 21996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Pei, L. Liang, G. Yao, J. Li, Q. Huang, and C. Fan, Angew. Chem. Int. Edit., 2012, 51, 9020.

    Article  CAS  Google Scholar 

  17. S. Zhang, K. Wang, C. Huang, and T. Sun, Nanoscale, 2015, 7, 20749.

    Article  CAS  PubMed  Google Scholar 

  18. X. Zhang, B. Ding, H. Wu, J. Wang, and H. Yang, Anal. Sci., 2017, 33, 165.

    Article  PubMed  Google Scholar 

  19. B. Ding, C. Liu, Q. Wu, Y. Wang, L. Li, and H. Yang, Anal. Sci., 2018, 34, 259.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Zhang, L. Wang, Y. Wang, and Y. Dong, Sensors, 2018, 18, 2179.

    Article  PubMed  PubMed Central  Google Scholar 

  21. J. Li, Y. Jia, J. Zheng, W. Zhong, G. Shen, R. Yang, and W. Tan, Chem. Commun., 2013, 49, 6137.

    Article  CAS  Google Scholar 

  22. D. Bai, D. Ji, J. Shang, Y. Hu, J. Gao, Z. Lin, J. Ge, and Z. Li, Sens. Actuators, B, 2017, 252, 1146.

    Article  CAS  Google Scholar 

  23. L. Wang, Y. Wen, L. Li, X. Yang, N. Jia, W. Li, J. Meng, M. Duan, X. Sun, and G. Liu, Biosens. Bioelectron., 2018, 115, 91.

    Article  CAS  PubMed  Google Scholar 

  24. X. F. Zhang, H. M. Xu, L. Han, N. B. Li, and H. Q. Luo, Anal. Sci., 2018, 34, 149.

    Article  CAS  PubMed  Google Scholar 

  25. D. L. Ma, L. Lu, S. Lin, B. He, and C. H. Leung, J. Mater. Chem. B, 2014, 3, 348.

    Article  PubMed  Google Scholar 

  26. D. M. Kolpashchikov, J. Am. Chem. Soc., 2008, 130, 2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L. Zhou, H. Cheng, J. E. Wang, and R. J. Pei, Chin. J. Anal. Chem., 2016, 44, 13.

    Article  Google Scholar 

  28. X. Liu, F. Wang, R. Aizen, O. Yehezkeli, and I. Willner, J. Am. Chem. Soc., 2013, 135, 11832.

    Article  CAS  PubMed  Google Scholar 

  29. Q. Mei, C. Jiang, G. Guan, K. Zhang, B. Liu, R. Liu, and Z. Zhang, Chem. Commun., 2012, 48, 7468.

    Article  CAS  Google Scholar 

  30. T. Konry and D. R. Walt, J. Am. Chem. Soc., 2009, 131, 13232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Katz, J. Wang, M. Privman, and J. Halámek, Anal. Chem., 2012, 84, 5463.

    Article  CAS  PubMed  Google Scholar 

  32. R. M. Dirks, J. S. Bois, J. M. Schaeffer, E. Winfree, and N. A. Pierce, Siam Rev., 2007, 49, 65.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Grant No. 61572302, No. 61272246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, L. & Dong, Y. A Label-free and Universal Platform for the Construction of Various Logic Circuits Based on Graphene Oxide and G-Quadruplex Structure. ANAL. SCI. 35, 181–187 (2019). https://doi.org/10.2116/analsci.18P349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P349

Keywords

Navigation