Skip to main content
Log in

Effects of Cholesterol Concentration and Osmolarity on the Fluidity and Membrane Tension of Free-standing Black Lipid Membranes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Although the mechanical properties and compositions of lipid bilayer membranes can change upon deformation, the fundamental relations between the composition, membrane tension and fluidity of membranes with little curvature have not yet been studied. In the current study, the membrane tension and the diffusion coefficients of free-standing black lipid membranes (BLMs), based on 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), were observed by systematic control of the cholesterol concentration and the osmotic pressure with the laser-induced surface deformation (LISD) and fluorescence recovery after photobleaching (FRAP) techniques. When the osmotic pressure was raised and, therefore, the curvature became larger, both the membrane tension and the diffusion coefficients increased as well. On the other hand, when the cholesterol concentration was raised, the membrane tension increased whereas the diffusion coefficient decreased. The importance of the present results goes beyond this quantitative evaluation of the relation between the membrane tension and the fluidity, as it clarifies the changes in the fundamental properties of lipid bilayers upon natural fluctuations and perturbative deformation that were hitherto unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sprong, P. van der Sluijs, and G. van Meer, Nat. Rev. Mol. Cell Biol., 2001, 2, 504.

    Article  CAS  PubMed  Google Scholar 

  2. D. M. Engelman, Nature, 2005, 438, 578.

    Article  CAS  PubMed  Google Scholar 

  3. O. S. Andersen, I. Roger, and E. Koeppe, Annu. Rev. Biophys. Biomol. Struct., 2007, 36, 107.

    Article  CAS  PubMed  Google Scholar 

  4. P. A. Janmey and P. K. J. Kinnunen, Trends Cell Biol., 2006, 16, 538.

    Article  CAS  PubMed  Google Scholar 

  5. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and P. Walter, “Molecular Biology of the Cell”, 2014, Garland Science.

    Google Scholar 

  6. R. Phillips, J. Kondev, J. Theriot, H. G. Garcia, and N. Orme, “Physical Biology of the Cell”, 2nd ed., 2013, Chap. 11, Garland Science.

    Google Scholar 

  7. T. Harayama and H. Riezman, Nat. Rev. Mol. Cell Biol., 2018, 19, 281.

    Article  CAS  PubMed  Google Scholar 

  8. E. Perozo, A. Kloda, D. M. Cortes, and B. Martinac, Nat. Struct. Biol., 2002, 9, 696.

    Article  CAS  PubMed  Google Scholar 

  9. S. Sukharev and D. P. Corey, Sci. STKE, 2004, 2004, re4.

  10. P. Wiggins and R. Phillips, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 4071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E. A. Evans, Biophys. J., 1973, 13, 941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E. Evans and A. Yeung, Biophys. J., 1989, 56, 151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. M. Hochmuth, J. Biomech., 2000, 33, 15.

    Article  CAS  PubMed  Google Scholar 

  14. S. U. Alam Shibly, C. Ghatak, M. A. Sayem Karal, M. Moniruzzaman, and M. Yamazaki, Biophys. J., 2016, 111, 2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. Takei, T. Yaguchi, T. Fujii, T. Nomoto, T. Toyota, and M. Fujinami, Soft Matter, 2015, 11, 8641.

    Article  CAS  PubMed  Google Scholar 

  16. M. Montal and P. Mueller, Proc. Natl. Acad. Sci. U. S. A., 1972, 69, 3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Hirano-Iwata, M. Niwano, and M. Sugawara, TrAC, Trends Anal. Chem., 2008, 27, 512.

    Article  CAS  Google Scholar 

  18. A. Hirano-Iwata, K. Aoto, A. Oshima, T. Taira, R.-t. Yamaguchi, Y. Kimura, and M. Niwano, Langmuir, 2010, 26, 1949.

    Article  CAS  PubMed  Google Scholar 

  19. A. Hirano-Iwata, T. Nasu, A. Oshima, Y. Kimura, and M. Niwano, Appl. Phys. Lett., 2012, 101, 023702.

    Article  Google Scholar 

  20. A. Hirano-Iwata, A. Oshima, H. Mozumi, Y. Kimura, and M. Niwano, Anal. Sci., 2012, 28, 1049.

    Article  CAS  PubMed  Google Scholar 

  21. M. Zagnoni, Lab Chip, 2012, 12, 1026.

    Article  CAS  PubMed  Google Scholar 

  22. S. Mitani and K. Sakai, Phys. Rev. E, 2002, 66, 031604.

    Article  Google Scholar 

  23. T. Morisaku, M. Ishihara, and H. Yui, Anal. Sci., 2018, 8, 979.

    Article  Google Scholar 

  24. T. Morisaku and H. Yui, Analyst, 2018, 143, 2397.

    Article  CAS  PubMed  Google Scholar 

  25. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J., 1976, 16, 1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D. M. Soumpasis, Biophys. J., 1983, 41, 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. Korlach, P. Schwille, W. W. Webb, and G. W. Feigenson, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 8461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H. Basit, V. Gaul, S. Maher, R. J. Forster, and T. E. Keyes, Analyst, 2015, 140, 3012.

    Article  CAS  PubMed  Google Scholar 

  29. Y.-L. Zhang, J. A. Frangos, and M. Chachisvilis, Biochem. Biophys. Res. Commun., 2006, 347, 838.

    Article  CAS  PubMed  Google Scholar 

  30. A. S. Reddy, D. T. Warshaviak, and M. Chachisvilis, Biochim. Biophys. Acta, 2012, 1818, 2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by JSPS (Japan Society for the Promotion of Science) KAKENHI Grant No. 15H03824.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Fujinami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomoto, T., Takahashi, M., Fujii, T. et al. Effects of Cholesterol Concentration and Osmolarity on the Fluidity and Membrane Tension of Free-standing Black Lipid Membranes. ANAL. SCI. 34, 1237–1242 (2018). https://doi.org/10.2116/analsci.18P200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P200

Keywords

Navigation