Skip to main content
Log in

Umbelliferone as a Small Molecular Peroxidase Mimic towards Sensitive Detection of H2O2 and Glucose

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this work, umbelliferone, a kind of coumarin derivative, was proved to exhibit peroxidase-like activity that could catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide to generate a blue-colored oxide (oxTMB). The catalytic mechanism is similar to that of native enzymes (e.g. horseradish peroxidase, HRP) and nanozymes, which follow the Michaelis–Menten kinetics behavior. Meanwhile, the 7-hydroxyl group of umbelliferone plays a significant role in the peroxidase-like activity. Compared with enzymes and nanozymes, this small molecular mimic enzyme possesses the advantages of low cost, simple molecular structures, small molecular weight and high stability against harsh conditions. Based on the favorable peroxidase mimetic activity of umbelliferone, a convenient, practical and sensitive H2O2 and glucose detection method was successfully established. This work not only opens some new inspirations into seeking for novel molecular enzyme mimetics with excellent catalytic activities, but also provides promising assays for clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. X. Green, W. Tang, M. McEntee, M. Neurock, and J. T. Yates, Jr., J. Am. Chem. Soc., 2012, 134, 12717.

    Article  CAS  PubMed  Google Scholar 

  2. H. G. Yang, J. Q. Zha, P. Zhang, Y. H. Xiong, L. J. Su, and F. G. Ye, RSC Adv., 2016, 6, 66963.

    Article  CAS  Google Scholar 

  3. J. Z. Chen, Y. J. Liu, G. X. Zhu, and A. H. Yuan, Cryst. Res. Tenchol., 2014, 49, 309.

    Article  CAS  Google Scholar 

  4. R. Akter, C. K. Rhee, and M. A. Rahman, Biosens. Bioelectron., 2015, 66, 539.

    Article  CAS  PubMed  Google Scholar 

  5. L. J. Su, Y. H. Xiong, H. H. Yang, P. Zhang, and F. G. Ye, J. Mater. Chem. B, 2016, 4, 128.

    Article  CAS  PubMed  Google Scholar 

  6. L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett, and X. Y. Yan, Nat. Nanotechnol., 2007, 2, 577.

    Article  CAS  PubMed  Google Scholar 

  7. E. Nakamura and H. Isobe, Acc. Chem. Rev., 2003, 36, 807.

    Article  CAS  Google Scholar 

  8. Y. N. Ding, B. C. Yang, H. Liu, Z. X. Liu, X. Zhang, X. W. Zheng, and Q. Y. Liu, Sens. Actuators, B, 2018, 259, 775.

    Article  CAS  Google Scholar 

  9. Y. F. Wang, N. Pan, and C. F. Peng, Anal. Sci., 2017, 33, 321.

    Article  CAS  PubMed  Google Scholar 

  10. Q. Y. Liu, Y. T. Yang, H. Li, R. R. Zhu, Q. Shao, S. G. Yang, and J. J. Xu, Biosens. Bioelectron., 2015, 64, 147.

    Article  CAS  PubMed  Google Scholar 

  11. Q. Y. Liu, Y. T. Yang, X. T. Lv, Y. N. Ding, Y. Z. Zhang, J. J. Jing, and Ch. X. Xu, Sens. Actuators, B, 2017, 240, 726.

    Article  CAS  Google Scholar 

  12. Z. Z. Yang, F. Q. Ma, Y. Zhu, S. H. Chen, C. Wang, and X. F. Lu, Dalton Trans., 2017, 46, 11171.

    Article  CAS  PubMed  Google Scholar 

  13. F. Kang, X. S. Hou, and K. Xu, Nanotechnology, 2015, 26, 405707.

    Article  PubMed  Google Scholar 

  14. E. Kuah, S. Toh, J. Yee, Q. Ma, and Z. Q. Gao, Chemistry, 2016, 22, 8404.

    Article  CAS  PubMed  Google Scholar 

  15. L. Liu, Y. Shi, Y. F. Yang, M. L. Li, Y. J. Long, Y. M. Huang, and H. Z. Zheng, Chem. Commun., 2016, 52, 13912.

    Article  CAS  Google Scholar 

  16. R. Simkovitch and D. Huppert, J. Phys. Chem. B, 2015, 119, 14683.

    Article  CAS  PubMed  Google Scholar 

  17. F. Wu and S. Sheu, Chin. Pharm. J., 1992, 44, 257.

    CAS  Google Scholar 

  18. C. M. Krauter, J. Mohring, T. Buckup, M. Pernpointner, and M. Motzkus, Phys. Chem. Chem. Phys., 2013, 15, 17846.

    Article  CAS  PubMed  Google Scholar 

  19. C. C. Perry, V. J. Tang, K. M. Konigsfeld, J. A. Aguilera, and J. R. Milligan, J. Phys. Chem. B, 2011, 115, 9889.

    Article  CAS  PubMed  Google Scholar 

  20. W. Y. Zhai, C. X. Wang, P. Yu, Y. X. Wang, and L. Q. Mao, Anal. Chem., 2014, 86, 12206.

    Article  CAS  PubMed  Google Scholar 

  21. L. Pan, X. Z. Li, Z. Q. Yan, H. R. Guo, and B. Qin, Plant Physiol. Biochem., 2015, 97, 272.

    Article  CAS  PubMed  Google Scholar 

  22. B. Garg and T. Bisht, Molecules, 2016, 21.

    Google Scholar 

  23. S. Kandil, A. D. Westwell, and C. McGuigan, Bioorg. Med. Chem. Lett., 2016, 26, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. P. D. Josephy, T. Eling, and R. P. Mason, J. Biol. Chem., 1982, 257, 3669.

    Article  CAS  PubMed  Google Scholar 

  25. Z. Z. Yang, Y. Zhu, G. D. Nie, M. X. Li, C. Wang, and X. F. Lu, Dalton Trans., 2017, 46, 8942.

    Article  CAS  PubMed  Google Scholar 

  26. H. H. Zhi, J. D. Wang, S. J. Wang, and Y. J. Wei, J. Spectrosc., 2013, Article ID 147128.

    Google Scholar 

  27. J. Zhang, C. G. Liu, and Y. J. Wei, Huaxue Tongbao, 2011, 74, 957.

    CAS  Google Scholar 

  28. P. Ju, Y. Z. Yu, M. Wang, Y. Zhao, D. Zhang, C. J. Sun, and X. X. Han, J. Mater. Chem. B, 2016, 4, 6316.

    Article  CAS  PubMed  Google Scholar 

  29. Y. F. Yang, D. J. Shen, Y. J. Long, Z. X. Xie, and H. Z. Zheng, Sci. Rep., 2017, 7, 43141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L. Su, W. Qin, H. Zhang, Z. U. Rahman, C. Ren, S. Ma, and X. Chen, Biosens. Bioelectron., 2015, 63, 384.

    Article  CAS  PubMed  Google Scholar 

  31. H. Wei and E. Wang, Anal. Chem., 2008, 80, 2250.

    Article  CAS  PubMed  Google Scholar 

  32. F. M. Qiao, L. J. Chen, X. N. Li, L. F. Li, and S. Y. Ai, Sens. Actuators, B, 2014, 193, 255.

    Article  CAS  Google Scholar 

  33. Q. Chen, J. Chen, C. J. Gao, M. L. Zhang, J. Y. Chen, and H. D. Qiu, Analyst, 2015, 140, 2857.

    Article  CAS  PubMed  Google Scholar 

  34. C. M. Riccardi, D. Mistri, O. Hart, M. Anuganti, Y. Lin, R. M. Kasi, and C. V. Kumar, Chem. Commun., 2016, 52, 2593.

    Article  CAS  Google Scholar 

  35. Z. Q. Yan, D. D. Wang, H. Y. Cui, D. H. Zhang, Y. H. Sun, H. Jin, X. Z. Li, X. Y. Yang, H. R. Guo, X. F. He, L. Pan, X. Ren, K. Guo, and B. Qi, Acta Physiol. Plant, 2016, 38, 248.

    Article  Google Scholar 

  36. L. Su, X. A. Yu, W. J. Qin, W. P. Dong, C. K. Wu, Y. Zhang, G. J. Mao, and S. L. Feng, J. Mater. Chem. B, 2017, 5, 116.

    Article  CAS  PubMed  Google Scholar 

  37. S. H. Lim, J. Wei, J. Lin, Q. Li, and K. Jin, Biosens. Bioelectron., 2005, 11, 2341.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21405124, 21175110), the Fundamental Research Funds for the Central Universities (No. XDJK2013A022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huzhi Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Huang, Z., Liu, L. et al. Umbelliferone as a Small Molecular Peroxidase Mimic towards Sensitive Detection of H2O2 and Glucose. ANAL. SCI. 34, 933–938 (2018). https://doi.org/10.2116/analsci.18P023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P023

Keywords

Navigation