Skip to main content
Log in

Paper-based DPPH Assay for Antioxidant Activity Analysis

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on a paper-based 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) assay for a simple, inexpensive, low reagent and sample consumption and high throughput analysis of antioxidant activity. The paper-based device was fabricated using a lamination method to create a 5-mm in diameter circular test zone that was embedded with a DPPH reagent. The analysis was carried out in one-step by dropping an antioxidant/sample onto the test zone. After reduction by the antioxidant, the DPPH radicals become stable DPPH molecules, resulting in a change in color from deep violet to pale yellow. The violet color intensity of DPPH was inversely proportional to the antioxidant activity of the samples, and was measured using imaging software. A high precision and a low limit of detection were found in the analysis of six standard antioxidants including gallic acid, trolox, ascorbic acid, caffeic acid, vanilliic acid and quercetin. The device was then validated against the traditional spectrophotometric DPPH assay by analyzing the antioxidant activity of 7 tea samples. The results showed no significant difference for gallic acid equivalent for all 7 samples obtained from the two methods at the 95% confidence level, indicating that the developed method was reliable for antioxidant activity analysis of real samples. Finally, the paper-based DPPH device was found to be stable over 10 days when stored in a refrigerator (2–4°C), making it an easy-to-use device for end-users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ismail, Z. M. Marjan, and C. W. Foong, Food Chem., 2004, 87, 581.

    Article  CAS  Google Scholar 

  2. L. A. Pham-Huy, H. He, and C. Pham-Huy, Int. J. Biomed. Sci., 2008, 4, 89.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. R. Komeri, F. G. Thankam, and J. Muthu, Mater. Sci. Eng. C, 2017, 71, 100.

    Article  CAS  Google Scholar 

  4. M. Antolovich, P. D. Prenzler, E. Patsalides, S. McDonald, and K. Robards, Analyst, 2002, 127, 183.

    Article  CAS  PubMed  Google Scholar 

  5. A. Augustyniak, G. Bartosz, A. Čipak, G. Duburs, L. U. Horáková, W. Łuczaj, M. Majekova, A. D. Odysseos, L. Rackova, and E. Skrzydlewska, Free Radical Res., 2010, 44, 1216.

    Article  CAS  Google Scholar 

  6. A. Wollinger, E. Perrin, J. Chahboun, V. Jeannot, D. Touraud, and W. Kunz, Comptes Rendus Chimie, 2016, 19, 754.

    Article  CAS  Google Scholar 

  7. B. D. Craft, A. L. Kerrihard, R. Amarowicz, and R. B. Pegg, Comprehensive Reviews in Food Science and Food Safety, 2012, 11, 148.

    Article  CAS  Google Scholar 

  8. S.-M. Jia, X.-F. Liu, D.-M. Kong, and H.-X. Shen, Biosens. Bioelectron., 2012, 35, 407.

    Article  CAS  PubMed  Google Scholar 

  9. V. Pedan, N. Fischer, and S. Rohn, Food Res. Int., 2016, 89, 890.

    Article  CAS  Google Scholar 

  10. A. C. Kurilich, E. H. Jeffery, J. A. Juvik, M. A. Wallig, and B. P. Klein, J. Agric. Food. Chem., 2002, 50, 5053.

    Article  CAS  PubMed  Google Scholar 

  11. A. T. Hukkanen, S. S. Pölönen, S. O. Kärenlampi, and H. I. Kokko, J. Agric. Food. Chem., 2006, 54, 112.

    Article  CAS  PubMed  Google Scholar 

  12. M. Bener, M. Özyürek, K. Güçlü, and R. Apak, Anal. Chem., 2010, 82, 4252.

    Article  CAS  PubMed  Google Scholar 

  13. K. H. Musa, A. Abdullah, B. Kuswandi, and M. A. Hidayat, Food Chem., 2013, 141, 4102.

    Article  CAS  PubMed  Google Scholar 

  14. E. J. Garcia, T. L. C. Oldoni, S. M. D. Alencar, A. Reis, A.D. Loguercio, and R. H. M. Grande, Braz. Dent. J., 2012, 23, 22.

    Article  PubMed  Google Scholar 

  15. Z. Cheng, J. Moore, and L. Yu, J. Agric. Food Chem., 2006, 54, 7429.

    Article  CAS  PubMed  Google Scholar 

  16. A. Wei and T. Shibamoto, J. Agric. Food Chem., 2010, 58, 7218.

    Article  CAS  PubMed  Google Scholar 

  17. I. I. Koleva, T. A. Van Beek, J. P. Linssen, A. D. Groot, and L. N. Evstatieva, Phytochem. Anal., 2002, 13, 8.

    Article  CAS  PubMed  Google Scholar 

  18. M. R. Maria do Socorro, J. Pérez-Jiménez, S. Arranz, R. E. Alves, E. S. de Brito, M. S. Oliveira, and F. Saura-Calixto, Food Res. Int., 2011, 44, 2100.

    Article  Google Scholar 

  19. D. Villano, M. Fernández-Pachón, M. Moyá, A. Troncoso, and M. García-Parrilla, Talanta, 2007, 71, 230.

    Article  CAS  PubMed  Google Scholar 

  20. T. E. Shian, A. Abdullah, K. H. Musa, M. Y. Maskat, and M.A. Ghani, Sains Malaysiana, 2012, 41, 319.

    CAS  Google Scholar 

  21. J. Deng, W. Cheng, and G. Yang, Food Chem., 2011, 125, 1430.

    Article  CAS  Google Scholar 

  22. I. M. Steinberg and S. Milardović, Talanta, 2007, 71, 1782.

    Article  CAS  PubMed  Google Scholar 

  23. D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, Anal. Chem., 2014, 87, 19.

    Article  PubMed  Google Scholar 

  24. J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T. J. Lu, and F. Xu, Biosens. Bioelectron., 2014, 54, 585.

    Article  CAS  PubMed  Google Scholar 

  25. P. Jarujamrus, R. Meelapsom, S. Pencharee, A. Obma, M. Amatatongchai, N. Ditcharoen, S. Chairam, and S. Tamuang, Anal. Sci., 2018, 34, 75.

    Article  CAS  PubMed  Google Scholar 

  26. Y. Sameenoi, P. Panymeesamer, N. Supalakorn, K. Koehler, O. Chailapakul, C. S. Henry, and J. Volckens, Environ. Sci. Technol., 2012, 47, 932.

    Article  PubMed  PubMed Central  Google Scholar 

  27. R. A. de Oliveira, F. Camargo, N. C. Pesquero, and R. C. Faria, Anal. Chim. Acta, 2017, 957, 40.

    Article  PubMed  Google Scholar 

  28. E. Carrilho, A. W. Martinez, and G. M. Whitesides, Anal. Chem., 2009, 81, 7091.

    Article  CAS  PubMed  Google Scholar 

  29. K. Abe, K. Suzuki, and D. Citterio, Anal. Chem., 2008, 80, 6928.

    Article  CAS  PubMed  Google Scholar 

  30. A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas III, H. Sindi, and G. M. Whitesides, Anal. Chem., 2008, 80, 3699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H. Asano and Y. Shiraishi, Anal. Sci., 2018, 34, 71.

    Article  CAS  PubMed  Google Scholar 

  32. J. Olkkonen, K. Lehtinen, and T. Erho, Anal. Chem., 2010, 82, 10246.

    Article  CAS  PubMed  Google Scholar 

  33. Y. Xia, J. Si and Z. Li, Biosens. Bioelectron., 2016, 77, 774.

    Article  CAS  PubMed  Google Scholar 

  34. P. Worramongkona, K. Seeda, P. Phansomboon, N. Ratnarathorn, O. Chailapakul, and W. Dungchai, Anal. Sci., 2018, 34, 103.

    Article  CAS  PubMed  Google Scholar 

  35. T. Piyanan, A. Athipornchai, C. S. Henry, and Y. Sameenoi, Anal. Sci., 2018, 34, 97.

    Article  CAS  PubMed  Google Scholar 

  36. E. Sharpe, T. Frasco, D. Andreescu, and S. Andreescu, Analyst, 2013, 138, 249.

    Article  CAS  PubMed  Google Scholar 

  37. T. G. Choleva, F. A. Kappi, D. L. Giokas, and A. G. Vlessidis, Anal. Chim. Acta, 2015, 860, 61.

    Article  CAS  PubMed  Google Scholar 

  38. Y. Sameenoi, P. N. Nongkai, S. Nouanthavong, C. S. Henry, and D. Nacapricha, Analyst, 2014, 139, 6580.

    Article  CAS  PubMed  Google Scholar 

  39. N. Nuchtavorn and M. Macka, Anal. Chim. Acta, 2016, 919, 70.

    Article  CAS  PubMed  Google Scholar 

  40. E. M. Fenton, M. R. Mascarenas, G. P. López, and S. S. Sibbett, ACS Appl. Mater. Interfaces, 2008, 1, 124.

    Article  Google Scholar 

  41. J. Xie and K. Schaich, J. Agric. Food Chem., 2014, 62, 4251.

    Article  CAS  PubMed  Google Scholar 

  42. C. Grajeda-Iglesias, E. Salas, N. Barouh, B. Baréa, A. Panya, and M. C. Figueroa-Espinoza, Food Chem., 2016, 194, 749.

    Article  CAS  PubMed  Google Scholar 

  43. W. Brand-Williams, M.-E. Cuvelier, and C. Berset, LWT- Food Sci. Technol., 1995, 28, 25.

    Article  CAS  Google Scholar 

  44. K. Mishra, H. Ojha, and N. K. Chaudhury, Food Chem., 2012, 130, 1036.

    Article  CAS  Google Scholar 

  45. M. C. Foti, J. Agric. Food. Chem., 2015, 63, 8765.

    Article  CAS  PubMed  Google Scholar 

  46. J. L. S. Barrita and M. D. S. S. Sánchez, in “Oxidative Stress and Chronic Degenerative Diseases-A Role for Antioxidants”, 2013, InTech.

    Google Scholar 

  47. R. Apak, M. Özyürek, K. Güçlü, and E. Çapanoglu, J. Agric. Food Chem., 2016, 64, 1028.

    Article  CAS  PubMed  Google Scholar 

  48. M. Kosar, H. Dorman, O. Bachmayer, K. Baser, and R. Hiltunen, Chem. Nat. Compd., 2003, 39, 161.

    Article  CAS  Google Scholar 

  49. B. Pratumvinit, N. Charoenkoop, S. Niwattisaiwong, G. J. Kost, and P. Tientadakul, Journal of Diabetes Science and Technology, 2016, 10, 1094.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Research Grant of Burapha University through National Research Council of Thailand (Grant No. 72/2558 and 93/2559) and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education. We would also like to thank Prof. Dr. Federick W. H. Beamish and Prof. Dr. Ron Beckett, Faculty of Science, Burapha University for their comments and correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupaporn Sameenoi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirivibulkovit, K., Nouanthavong, S. & Sameenoi, Y. Paper-based DPPH Assay for Antioxidant Activity Analysis. ANAL. SCI. 34, 795–800 (2018). https://doi.org/10.2116/analsci.18P014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P014

Keywords

Navigation