Skip to main content
Log in

Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Direct and mediated electron transfer (DET and MET) in enzyme electrodes with a novel flavin adenine dinucleotidedependent glucose dehydrogenase (FAD-GDH) from fungi are compared for the first time. DET is achieved by placing a single-walled carbon nanotube (CNT) between GDH and a flat gold electrode where the CNT is close to FAD within the distance for DET. MET is induced by using a free electron transfer mediator, potassium hexacyanoferrate, and shuttles electrons from FAD to the gold electrode. Cyclic voltammetry shows that the onset potential for glucose response current in DET is smaller than in MET, and that the distinct redox current peak pairs in MET are observed whereas no peaks are found in DET. The chronoamperometry with respect to a glucose biosensor shows that (i) the response in DET is more rapid than in MET; (ii) the current at more than +0.45V in DET is larger than the current at the current-peak potential in MET; (iii) a DET electrode covers the glucose concentration range for clinical requirements and is not susceptible to interfering agents at +0.45 V; and (iv) a DET electrode with the novel fungal FAD-GDH does not affect sensing accuracy in the presence of up to 5 mM xylose, while it often shows a similar response level to glucose with other conventionally used fungus-derived FAD-GDHs. It is concluded that our DET system overcomes the disadvantage of MET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Muguruma, H. Iwasa, H. Hidaka, A. Hiratsuka, and H. Uzawa, ACS Catal., 2017, 7, 725.

    Article  CAS  Google Scholar 

  2. H. Iwasa, A. Hiratsuka, K. Yokoyama, H. Uzawa, K. Orihara, and H. Muguruma, ACS Omega, 2017, 2, 1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. K. Sode, N. Loew, Y. Ohnishi, H. Tsuruta, K. Mori, K. Kojima, W. Tsugawa, J. T. LaBelle, and D. C. Klonoff, Biosens. Bioelectron., 2017, 87, 305.

    Article  CAS  PubMed  Google Scholar 

  4. S. Tsujimura, S. Kojima, T. Ikeda, and K. Kano, Anal. Bioanal. Chem., 2006, 386, 645.

    Article  CAS  PubMed  Google Scholar 

  5. S. Tsujimura, S. Kojima, K. Kano, T. Ikeda, M. Sato, H. Sanada, and H. Omura, Biosci. Biotechnol. Biochem., 2006, 70, 654.

    Article  CAS  PubMed  Google Scholar 

  6. C. Hou, S. Fan, Q. Lang, and A. Liu, Anal. Chem., 2015, 87, 3382.

    Article  CAS  PubMed  Google Scholar 

  7. R. Monošík, M. Stredanský, K. Lušpai, P. Magdolen, and E. Šturdík, Enzyme Microbial Technol., 2012, 50, 227.

    Article  Google Scholar 

  8. M. N. Zafar, X. Wang, C. Sygmund, R. Ludwig, D. Leech, and L. Gorton, Anal. Chem., 2012, 84, 334.

    Article  CAS  PubMed  Google Scholar 

  9. M. N. Zafar, N. Beden, D. Leech, C. Sygmund, R. Ludwig, and L. Gorton, Anal. Bioanal. Chem., 2012, 402, 2069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K. Murata, A. Akatsuka, T. Sadakane, A. Matsunaga, and S. Tsujimura, Electrochim. Acta, 2014, 136, 537.

    Article  CAS  Google Scholar 

  11. T. Yamazaki, J. Okuda-Shimazaki, C. Sakata, T. Tsuya, and K. Sode, Anal. Lett., 2008, 41, 2363.

    Article  CAS  Google Scholar 

  12. Y. Yamashita, S. Ferri, M. L. Huynh, H. Shimizu, H. Yamaoka, and K. Sode, Enzyme Microbial. Technol., 2013, 52, 123.

    Article  CAS  Google Scholar 

  13. Y. Ravenna, L. Xia, J. Gun, A. A. Mikhaylov, A. G. Medvedev, O. Lev, and L. Alfonta, Anal. Chem., 2015, 87, 9567.

    Article  CAS  PubMed  Google Scholar 

  14. O. Yehezkeli, R. Tel-Vered, S. Raichlin, and I. Willner, ACS Nano, 2011, 5, 2385.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Matsui, K. Hamamoto, Y. Kitazumi, O. Shirai, and K. Kano, Anal. Sci., 2017, 33, 845.

    Article  CAS  PubMed  Google Scholar 

  16. R. Sakuta, K. Takeda, T. Ishida, K. Igarashi, M. Samejima, N. Nakamura, and H. Ohno, Electrochem. Commun., 2015, 56, 75.

    Article  CAS  Google Scholar 

  17. R. D. Milton, F. Giroud, A. E. Thumser, S. D. Minteer, and R. C. T. Slade, Phys. Chem. Chem. Phys., 2013, 15, 19371.

    Article  CAS  PubMed  Google Scholar 

  18. R. D. Milton, K. Lim, D. P. Hickey, and S. D. Minteer, Bioelectrochemistry, 2015, 105, 56.

    Article  Google Scholar 

  19. H. Yoshida, G. Sakai, K. Mori, K. Kojima, S. Kamitori, and K. Sode, Sci. Rep., 2015, 5, 13498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Heller, Acc. Chem. Res., 1990, 23, 128.

    Article  CAS  Google Scholar 

  21. Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, and I. Willner, Science, 2003, 299, 1877.

    Article  CAS  PubMed  Google Scholar 

  22. F. Patolsky, Y. Weizmann, and I. Willner, Angew. Chem., Int. Ed., 2004, 43, 2113.

    Article  CAS  Google Scholar 

  23. M. Zayats, E. Katz, and I. Willner, J. Am. Chem. Soc., 2002, 124, 14724.

    Article  CAS  PubMed  Google Scholar 

  24. E. Katz, L. Sheeney-Haj-Ichia, and I. Willner, Angew. Chem., Int. Ed., 2004, 43, 3292.

    Article  CAS  Google Scholar 

  25. J. T. Holland, C. Lau, S. Brozik, P. Atanassov, and S. Banta, J. Am. Chem. Soc., 2011, 133, 19262.

    Article  CAS  PubMed  Google Scholar 

  26. M. Frasconi, A. Heyman, I. Medalsy, D. Porath, F. Mazzei, and O. Shoseyov, Langmuir, 2011, 27, 12606.

    Article  CAS  PubMed  Google Scholar 

  27. M. Wooten, S. Karra, M. Zhang, and W. Gorski, Anal. Chem., 2014, 86, 752.

    Article  CAS  PubMed  Google Scholar 

  28. Y. Wang and Y. Yao, Microchim. Acta, 2012, 176, 271.

    Article  CAS  Google Scholar 

  29. J. M. Goran, S. M. Mantilla, and K. J. Stevenson, Anal. Chem., 2013, 85, 1571.

    Article  CAS  PubMed  Google Scholar 

  30. B. Liang, X. Guo, L. Fang, Y. Hu, G. Yang, Q. Zhu, J. Wei, and X. Ye, Electrochem. Commun., 2015, 50, 1.

    Article  Google Scholar 

  31. A. Heller and B. Feldman, Acc. Chem. Res., 2010, 43, 963.

    Article  CAS  PubMed  Google Scholar 

  32. F. Tasca, L. Gorton, W. Harreither, D. Haltrich, R. Ludwig, and G. Nöll, Anal. Chem., 2009, 81, 2791.

    Article  CAS  PubMed  Google Scholar 

  33. L. Stoica, T. Ruzgas, R. Ludwig, D. Haltrich, and L. Gorton, Langmuir, 2006, 22, 10801.

    Article  CAS  PubMed  Google Scholar 

  34. K. Ozawa, H. Iwasa, N. Sasaki, N. Kinoshita, A. Hiratsuka, and K. Yokoyama, Appl. Microbiol. Biotechol., 2017, 101, 173.

    Article  CAS  Google Scholar 

  35. H. Iwasa, K. Ozawa, N. Sasaki, N. Kinoshita, A. Hiratsuka, and K. Yokoyama, Electrochemistry, 2016, 84, 342.

    Article  CAS  Google Scholar 

  36. S. Vogt, M. Schneider, H. Schäfer-Eberwein, and G. Nöll, Anal. Chem., 2014, 86, 7530.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Muguruma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, K., Orihara, K., Muguruma, H. et al. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. ANAL. SCI. 34, 783–787 (2018). https://doi.org/10.2116/analsci.17P613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17P613

Keywords

Navigation