Skip to main content
Log in

Determination of Sulfur in Grape and Apricot Samples Using High-resolution Continuum Source Electrothermal Molecular Absorption Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The determination of sulfur in apricot and grape samples was performed by using high-resolution continuum source electrothermal molecular absorption spectrometry based on vaporization of the carbon monosulfide (CS) molecule. CS forms in the gas phase without the addition of any molecule-forming element, since graphite cuvette contains plenty of carbon as well as food samples. A mixture of 15 μg Pd + 10 μg Mg was used in solution as the chemical modifier. The best sensitivity was obtained at 900°C of the pyrolysis temperature with a K2SO4 calibration solution. The calibration plot drew a linear path between 50 and 1600 ng of sulfur, and the limit of detection was found to be 23 ng. The accuracy of the method was confirmed with the use of a standard reference material (Rice Flour, NIST SRM 1568a). The sulfur content in chemically dried apricot samples (1987 ± 45 mg/kg) was determined to be higher than that of apricot samples dried under sunshine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baysal and S. Akman, Talanta, 2011, 85, 2662.

    Article  CAS  PubMed  Google Scholar 

  2. H. R. Cadorim, È. R. Pereira, E. Carasek, B. Welz, and J. B. Andrade, Talanta, 2016, 146, 203.

    Article  CAS  PubMed  Google Scholar 

  3. B. Welz, F. G. Lepri, R. G. O. Araujo, S. L. C. Ferreira, M. D. Huang, M. Okruss, and H. Becker Ross, Anal. Chim. Acta, 2009, 647, 137.

    Article  CAS  PubMed  Google Scholar 

  4. S. Gunduz and S. Akman, Food Chem., 2015, 172, 213.

    Article  CAS  PubMed  Google Scholar 

  5. World Health Organization (WHO), Safety Evaluation of Certain Food Additives, WHO Food Additives Series 42, International Pogramme on Chemical Safety, Sulfur Dioxide and Sulfites (addendum), 1999.

    Google Scholar 

  6. S. Gunduz and S. Akman, Lwt-Food Sci. Technol., 2014, 59, 718.

    Article  CAS  Google Scholar 

  7. D. Mischek and C. Krapfenbauer-Cermak, Food Addit. Contam., 2012, 29, 371.

    CAS  Google Scholar 

  8. E. Papadopoulou-Mourkidou, J. Assoc. Off. Anal. Chem., 1991, 74, 745.

    CAS  PubMed  Google Scholar 

  9. G. Baumbach, T. Limburg, and J. W. Einax, Microchem. J., 2013, 106, 295.

    Article  CAS  Google Scholar 

  10. D. K. A. Padma, Talanta, 1986, 33, 550.

    Article  CAS  PubMed  Google Scholar 

  11. G. A. Norton and R. E. Peters, Fuel, 1993, 72, 1573.

    Article  CAS  Google Scholar 

  12. S. S. M. Hassan, M. S. A. Hamza, and A. H. K. Mohamed, Anal. Chim. Acta, 2006, 570, 232.

    Article  CAS  PubMed  Google Scholar 

  13. R. E. Santelli, E. P. Oliveira, M. F. B. Carvalho, M. A. Bezerra, and A. S. Freire, Spectrochim. Acta, Part B, 2008, 63, 800.

    Article  Google Scholar 

  14. L. Ackerman, J. Rohovec, and O. Šebek, Geostand. Geoanal. Res., 2012, 36, 407.

    Article  CAS  Google Scholar 

  15. M. E. Erdman, C. A. Lee, W. Yang, and L. Ingram, Geostand. Geoanal. Res., 2013, 38, 51.

    Article  Google Scholar 

  16. R. S. Amais, S. E. Long, J. A. Nóbrega, and S. J. Christopher, Anal. Chim. Acta, 2014, 806, 91.

    Article  CAS  PubMed  Google Scholar 

  17. W. P. O. Filho, D. L. G. Borges, T. D. Saint’Pierre, M. Dupim, F. Vale, B. Marques, and F. R. Medeiros, Fuel, 2017, 202, 227.

    Article  Google Scholar 

  18. I. Al-Zahrani, C. Basheer, and T. Htun, J. Chromatogr. A, 2014, 1330, 97.

    Article  CAS  PubMed  Google Scholar 

  19. K. H. McKelvie and K. B. Thurbide, Anal. Methods, 2017, 9, 1097.

    Article  CAS  Google Scholar 

  20. Y. Kim, J. Lee, H. Yoon, and N. Woo, Microchem. J., 2016, 124, 594.

    Article  CAS  Google Scholar 

  21. V. Chubarov, T. Aisueva, and A. Finkelshtein, Anal. Lett., 2016, 49, 2099.

    Article  CAS  Google Scholar 

  22. S. Musazzi, E. Golinelli, U. Perini, F. Barberis, and G. A. Zanetta, SAS, IEEE, 2012, 1.

    Google Scholar 

  23. D. J. Butcher, Anal. Chim. Acta, 2013, 804, 1.

    Article  CAS  PubMed  Google Scholar 

  24. A. S. Camera, P. P. Arcênio, W. O. P. Filho, T. A. Maranhão, F. J. S. Oliveira, and V. L. A. Frescura, Microchem. J., 2017, 134, 301.

    Article  CAS  Google Scholar 

  25. N. Ozbek and A. Baysal, Spectrochim Acta, Part B, 2017, 130, 17.

    Article  CAS  Google Scholar 

  26. C. S. Huber, M. G. R. Vale, B. Welz, J. B. Andrade, and M. B. Dessuy, Spectrochim Acta, Part B, 2015, 108, 68.

    Article  CAS  Google Scholar 

  27. M. Resano and M. R. Florez, J. Anal. At. Spectrom., 2012, 27, 401.

    Article  CAS  Google Scholar 

  28. K. Dittrich, H. Fuchs, H. Berndt, J. A. C. Broekaert, and G. Schaldach, Fresenius J. Anal. Chem., 1990, 336, 303.

    Article  CAS  Google Scholar 

  29. E. Bulska, “Encyclopedia of Analytical Chemistry”, ed. R.A. Meyers, 2009, John Wiley & Sons Ltd., Chichester, UK.

  30. J. S. Gois, S. J. M. Malderen, H. R. Cadorim, B. Welz, and F. Vanhaecke, Spectrochim. Acta, Part B, 2017, 132, 50.

    Article  Google Scholar 

  31. N. Ozbek and S. Akman, J. Agric. Food Chem., 2013, 61, 4816.

    Article  CAS  PubMed  Google Scholar 

  32. B. Welz, M. G. R. Vale, S. Florek, M. Okruss, M. D. Huang, and H. Becker-Ross, “Encyclopedia of Analytical Chemistry”, ed. R. A. Meyers, 2010, Wiley, Hoboken, NJ.

  33. N. Ozbek and A. Baysal, Food Chem., 2015, 168, 460.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank financial support of the foundation of The Council of Higher Education of Turkey (No. 2547/39). This study was funded by No. 2547/39

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Kula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, Y., Broekaert, J.A.C. & Kula, İ. Determination of Sulfur in Grape and Apricot Samples Using High-resolution Continuum Source Electrothermal Molecular Absorption Spectrometry. ANAL. SCI. 34, 831–836 (2018). https://doi.org/10.2116/analsci.17P608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17P608

Keywords

Navigation