Skip to main content
Log in

Detection of Trimethylamine Based on a Manganese Tetraphenylporphyrin Optical Waveguide Sensing Element

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The sensitive detection of trimethylamine has been accomplished by using a homogeneous optical waveguide sensor system. Also the sensor can be easily fabricated by using tetraphenylporphyrin manganese (MnTPP) as sensitive materials to detect different volatile organic compounds (VOC). NMR (1H-NMR), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), infrared (IR), and ultraviolet-visible (UV-vis) instrumental means were used to characterize its structure. Gas-sensing measurements indicated that the sensing element has shown good selectivity, high sensitivity and a low detection limit level of 0.1 ppm to trimethylamine (TMA) with the presence of interference gases at room temperature. For a range of trimethylamine concentrations from 0.1 to 1000 ppm, the sensor has shown a short response time. Also the response time and recovery time are 1.5 and 50 s, respectively. Simulation experiments (dichloromethane, chloroform and carbon tetrachloride were selected as interference gases) showed little interference with its gas sensing. That may provide an ideal candidate for detecting the freshness of fish and seafood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Natale, D. Salimbeni, R. Paolesse, A. Macagnano, and A. D. Amico, Sens. Actuator, B, 2000, 65, 220.

    Article  Google Scholar 

  2. S. F. Liu, C. H. M. Lionel, and T. M. Swager, Chem. Mater., 2015, 27, 3560.

    Article  CAS  Google Scholar 

  3. L. Lvova, C. D. Natale, and R. Paolesse. Sens. Actuators, B, 2013, 179, 21.

    Article  CAS  Google Scholar 

  4. L. Lvova, M. Mastroianni, G. Pomarico, M. Santonico, G. Pennazza, C. D. Natale, R. Paolesse, and A. D. Amico, Sens. Actuators, B, 2012, 170, 163.

    Article  CAS  Google Scholar 

  5. C. D. Natale, D. Monti, and R. Paolesse, Mater. Today, 2010, 13, 46.

    Article  Google Scholar 

  6. S. Ishihara, J. Labuta, W. V. Rossom, D. Ishikawa, K. Minami, J. P. Hill, and K. Ariga, Phys. Chem. Chem. Phys., 2014, 16, 9713.

    Article  CAS  PubMed  Google Scholar 

  7. T. Sato, K. Ebisawa, K. Sue, S. Ito, T. Saito, and N. Itoh. Ind. Eng. Chem. Res., 2012, 51, 13908.

    Article  CAS  Google Scholar 

  8. Y. Q. Weng, F. Yue, Y. R. Zhong, and B.-H. Ye, Inorg. Chem., 2007, 46, 7749.

    Article  CAS  PubMed  Google Scholar 

  9. F. Buchner, K. Flechtner, Y. Bai, E. Zillner, I. Kellner, H. P. Steinruck, H. Marbach, and J. M. Gottfried, J. Phys. Chem. C, 2008, 112, 15458.

    Article  CAS  Google Scholar 

  10. T. Ohtomo, A. Yokoyama, M. Konno, O. Ohno, S. Igarashi, and Y. Takagai, Anal. Sci., 2016, 32, 623.

    Article  CAS  PubMed  Google Scholar 

  11. K. L. O. Neal, and S. G. Weber, J. Phys. Chem. B, 2009, 113, 7449.

    Article  Google Scholar 

  12. V. C. Zoldan, R. Faccio, C. Gao, and A. A. Pasa, J. Phys. Chem. C, 2013, 117, 15984.

    Article  CAS  Google Scholar 

  13. E. X. Chen, H. R. Fu, R. Lin, Y. X. Tan, and J. Zhang, Appl. Mater. Inter., 2014, 6, 22871.

    Article  CAS  Google Scholar 

  14. S. Craciun, J. A. Marks, and E. P. Balskus, Chem. Biol., 2014, 9, 1408.

    CAS  Google Scholar 

  15. R. Zhang, L. L. Wang, J. N. Deng, T. T. Zhou, Z. Lou, and T. Zhang, Sens. Actuators, B, 2015, 220, 1224.

    Article  CAS  Google Scholar 

  16. S. H. Lee, J. H. Lim, J. Park, S. Hong, and T. H. Park, Biosens. Bioelectron., 2015, 71, 179.

    Article  CAS  PubMed  Google Scholar 

  17. K. Zaitsu, M. Katagi, H. Kamata, T. Kamata, N. Shima, A. Miki, T. Iwamura, and H. Tsuchihashi, J. Mass. Spectrom., 2008, 43, 528.

    Article  CAS  PubMed  Google Scholar 

  18. Z. L. Zhi, A. Rios, and M. Valcarcel, Anal. Chem., 1995, 67, 871.

    Article  CAS  Google Scholar 

  19. Q. Wang, Y. F. Xie, W. J. Zhao, P. Li, H. Qian, and X. Z. Wang, Anal. Methods, 2014, 6, 2965.

    Article  CAS  Google Scholar 

  20. H. S. Woo, C. W. Na, I.L.D. Kim, and J. H. Lee. Nanotechnology, 2012, 23, 245501.

    Article  PubMed  Google Scholar 

  21. R. Yang, X. Huang, Z. Y. Wang, Y. Z. Zhou, and L. T. Liu, Sens. Actuator, B, 2010, 145, 474.

    Article  CAS  Google Scholar 

  22. C. A. Weatherly, R. M. Woods, and D. W. Armstrong, J. Agric. Food Chem, 2014, 62, 1832.

    Article  CAS  PubMed  Google Scholar 

  23. Z. Li, H. Li, M. K. LaGasse, and K. S. Suslick, Anal. Chem., 2016, 88, 5615.

    Article  CAS  PubMed  Google Scholar 

  24. Z. Lou, F. Li, J. Deng, L. Wang, and T. Zhang, Appl. Mater. Inter., 2013, 5, 12310.

    Article  CAS  Google Scholar 

  25. T. Murakami, Y. Iwamuro, S. Chinaka, N. Takayama, and T. Komatsu, Anal. Sci., 2015, 31, 1325.

    Article  CAS  PubMed  Google Scholar 

  26. R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, and C. D. Natale, Chem. Rev., 2016, 117, 2517.

    Article  PubMed  Google Scholar 

  27. A. Hayrensa, Y. Abliz, and M. Mamtimin, Anal. Chem., 2008, 80, 7678.

    Article  Google Scholar 

  28. R. Abdurahman, A. Yimit, H. Ablat, M. Mahmut, J-D. Wang, and K. Itoh, Anal. Chim. Acta, 2010, 658, 63.

    Article  CAS  PubMed  Google Scholar 

  29. A. Yimit, A. Rossberg, T. Amemiya, and K. Itoh, Talanta, 2005, 65, 1102.

    Article  CAS  PubMed  Google Scholar 

  30. P. Nizamidin, A. Yimit, J. D. Wang, and K. Itoh, Thin Solid Films, 2012, 520, 6250.

    Article  CAS  Google Scholar 

  31. N. Patima, Y. Abliz, and I. Kiminori, New J. Chem., 2016, 40, 295.

    Article  CAS  Google Scholar 

  32. T. Gulmira, T. Arken, T. Amangul, and Y. Abliz, Chin. J. Appl. Chem., 2015, 32, 232.

    Google Scholar 

  33. W. J. Zhang, P. P. Jiang, Y. Wang, J. Zhang, and P.-B. Zhang, Synth. React. Inorg. Met., 2016, 46, 1765.

    Article  CAS  Google Scholar 

  34. A. Abdukayum, A. Yimit, M. Mahmut, and K. Itoh, Sens. Lett, 2007, 5, 395.

    Article  CAS  Google Scholar 

  35. R. Kadir, A. Yimit, H. Ablat, M. Mahmut, and K. Itoh, Environ. Sci. Technol., 2009, 43, 5113.

    Article  CAS  PubMed  Google Scholar 

  36. K. X. Tan, H. O. Lintang, S. Maniam, S. J. Langford, and M. B. Bakar, Tetrahedron, 2016, 72, 5402.

    Article  CAS  Google Scholar 

  37. W. J. Zhang, P. P. J, P. B. Zhang, and P. Liu, Catal. Lett., 2012, 142, 1512.

    Article  CAS  Google Scholar 

  38. I. B. Haberle, S. I. Liochev, I. Spasojevic, and I. Fridovich, Arch. Biochem. Biophys., 1997, 343, 225.

    Article  Google Scholar 

  39. S. Sakthinathan, H. F. Lee, S. M. Chen, and P. Tamizhdurai, J. Colloid Interf. Sci., 2016, 468, 120.

    Article  CAS  Google Scholar 

  40. J. Chlistunoff and J. M. Sansinena. J. Phys. Chem. C, 2014, 118, 19139.

    Article  CAS  Google Scholar 

  41. S. H. Peng, M. H. Mahood, H. B. Zou, S. B. Yang, and H. Y. Liu. J. Mol. Catal. A Chem., 2014, 395, 180.

    Article  CAS  Google Scholar 

  42. S. Licoccia, E. Morgan te, R. Paolesse, F. Polizio, M. O. Senge, E. Tondello, and T. Boschi, Inorg. Chim. Acta, 1997, 36, 1564.

    Article  CAS  Google Scholar 

  43. Y. Q. Wang, H. S. Dorizon, and H. K. Youssoufi, Sens. Actuators, B, 2017, 251, 40.

    Article  CAS  Google Scholar 

  44. N. A. M. Barakat, E. Ahmed, M. T. Amen, and M. A. Abdelkareem, Mater. Lett., 2018, 210, 317.

    Article  CAS  Google Scholar 

  45. S. R. Wang, J. X. Zhang, J..D. Yang, X. L. Gao, H. X. Zhang, Y. S. Wang, and Z. Y. Zhu, RSC Adv., 2015, 5, 10048.

    Article  CAS  Google Scholar 

  46. Y. L. Wang, F. M. Liu, Q. Y. Yang, Y. Gao, P. Sun, T. Zhang, and G.Y. Lu, Mater. Lett., 2016, 183, 378.

    Article  CAS  Google Scholar 

  47. Y. Yan, P. Nizamidin, G. Turdi, N. Kari, and A. Yimit, Anal. Sci., 2015, 31, 1325.

    Article  Google Scholar 

  48. G. Zhylyak, V. R. Perez, M. Linnhoff, T. Hug, D. Citterio, and U. E. S. Keller, Opt. Laser Eng., 2005, 43, 603.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 21765021).

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Nizamidin, P., Zhang, Y. et al. Detection of Trimethylamine Based on a Manganese Tetraphenylporphyrin Optical Waveguide Sensing Element. ANAL. SCI. 34, 559–565 (2018). https://doi.org/10.2116/analsci.17P564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17P564

Keywords

Navigation