Skip to main content
Log in

Development of Titania Nanotube-based Electrochemical Immunosensor and Determination of Prostate Specific Antigen

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Early diagnosis of cancer is the most important factor that increases the success of treatment. Therefore, the development of new diagnostic tools is a necessity. In this study, a new electrode surface was developed via modification of a disposable titanium electrode with anodic oxidation and coating of gold nanoparticle and chitosan. Titanium electrodes were anodized by several anodization parameters to obtain a nanoporous surface and characterized by scanning electron microscopy. Electrodes anodized in optimum conditions were modified with gold nanoparticles and chitosan for enhancing conductivity and functionalizing the surface of electrode, respectively. To detect prostate specific antigen (PSA), antiPSA was bound onto the functional electrode surface. Modified electrodes were characterized with scanning electron microscopy and cyclic voltammetry and used for chronoamperometric detection of PSA. Limit of detection (LOD) of the designed electrode was found to be 7.8 ng mL−1 for PSA in a linear range of 0–100 ng mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Song, H. Xu, and C. Fan, Int. J. Nanomed., 2006, 1, 433.

    Article  CAS  Google Scholar 

  2. J. L. Hammond, N. Formisano, P. Estrela, S. Carrara, and J. Tkac, Essays Biochem., 2016, 60, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  3. D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, Sensors, 2008, 8, 1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. I. L. Justino, A. C. Duarte, and T. A. P. Rocha-Santos, TrAC, Trends Anal. Chem., 2016, 85, 36.

    Article  CAS  Google Scholar 

  5. M. Holzinger, A. Le Goff, and S. Cosnier, Front. Chem., 2014, 2, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. Hasanzadeh and N. Shadjou, TrAC, Trends Anal. Chem., 2016, 80, 167.

    Article  CAS  Google Scholar 

  7. World Health Organization (WHO), World Health Statistics 2014, 2014.

    Google Scholar 

  8. R. L. Siegel, K. D. Miller, and A. Jemal, Ca-Cancer J. Clin., 2016, 66, 7.

    Article  PubMed  Google Scholar 

  9. E. Burcu Bahadir and M. Kemal Sezgintürk, Talanta, 2015, 132, 162.

    Article  CAS  PubMed  Google Scholar 

  10. V. S. P. K. S. A. Jayanthi, A. B. Das, and U. Saxena, Biosens. Bioelectron., 2017, 91, 15.

    Article  CAS  PubMed  Google Scholar 

  11. J. Lin, W. Qu, and S. Zhang, Anal. Sci., 2007, 23, 1059.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Zhang, R. Chen, L. Xu, Y. Ning, S. Xie, and G.-J. Zhang, Anal. Sci., 2015, 31, 73.

    Article  PubMed  Google Scholar 

  13. H. C. Yoon, H. Yang, and S. Y. Byun, Anal. Sci., 2004, 20, 1249.

    Article  CAS  PubMed  Google Scholar 

  14. National Helath Organization, Definition of Biomarker.

  15. J. Wu, Z. Fu, F. Yan, and H. Ju, TrAC, Trends Anal. Chem., 2007, 26, 679.

    Article  CAS  Google Scholar 

  16. X. Wang, J. Miao, Q. Xia, K. Yang, X. Huang, W. Zhao, and J. Shen, Electrochim. Acta, 2013, 112, 473.

    Article  CAS  Google Scholar 

  17. H. Lilja, D. Ulmert, and A. J. Vickers, Nat. Rev. Cancer, 2008, 8, 268.

    Article  CAS  PubMed  Google Scholar 

  18. T. J. Wilt, P. T. Scardino, S. V. Carlsson, and E. Basch, JNCI, J. Natl. Cancer Inst., 2014, 106, dju010.

    Article  PubMed  Google Scholar 

  19. K. Yoshida, M. Honda, S. Sumi, K. Arai, S. Suzuki, and S. Kitahara, Clin. Chim. Acta, 1999, 280, 195.

    Article  CAS  PubMed  Google Scholar 

  20. P. Tang, W. Du, K. Xie, X. Deng, J. Fu, H. Chen, and W. Yang, Urol. Oncol. Semin. Orig. Invest., 2013, 31, 744.

    Google Scholar 

  21. P. Roy, S. Berger, and P. Schmuki, Angew. Chem., Int. Ed., 2011, 50, 2904.

    Article  CAS  Google Scholar 

  22. Y. Ma, X.-L. Shen, Q. Zeng, and L.-S. Wang, Microchim. Acta, 2017, 184, 4469.

    Article  CAS  Google Scholar 

  23. S. Li, Q. Luo, Y. Liu, Z. Zhang, G. Shen, H. Wu, A. Chen, X. Liu, and A. Zhang, Polymers, 2017, 9, 359.

    Article  PubMed  PubMed Central  Google Scholar 

  24. S. A. Kumar, S.-F. Wang, and Y.-T. Chang, Thin Solid Films, 2010, 518, 5832.

    Article  CAS  Google Scholar 

  25. E. Yilmaz and S. Suzer, Appi. Surf. Sci., 2010, 256, 6630.

    Article  CAS  Google Scholar 

  26. R.-C. Zhang, D. Sun, R. Zhang, W.-F. Lin, M. Macias-Montero, J. Patel, S. Askari, C. McDonald, D. Mariotti, and P. Maguire, Sci. Rep., 2017, 7, 46682.

    Article  PubMed  PubMed Central  Google Scholar 

  27. N. Çallşkan, C. Bayram, E. Erdal, Z. Karahaliloĝlu, and E.B. Denkbaş, Mater. Sci. Eng., C, 2014, 35, 100.

    Article  Google Scholar 

  28. X. Dai and R. G. Compton, Anal. Sci., 2006, 22, 567.

    Article  CAS  PubMed  Google Scholar 

  29. I. Nukatsuka, S. Osanai, and K. Ohzeki, Anal. Sci., 2008, 24, 267.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Li, Y. Zhou, H. Xian, L. Wang, and J. Huo, Anal. Sci., 2011, 27, 1223.

    Article  CAS  PubMed  Google Scholar 

  31. J. Redepenning, G. Venkataraman, J. Chen, and N. Stafford, J. Biomed. Mater. Res. Part A, 2003, 66A, 411.

    Article  CAS  Google Scholar 

  32. H. Huang and X. Yang, Colloids Surf., A, 2003, 226, 77.

    Article  CAS  Google Scholar 

  33. Q. Xu, C. Mao, N.-N. Liu, J.-J. Zhu, and J. Sheng, Biosens. Bioelectron., 2006, 22, 768.

    Article  CAS  PubMed  Google Scholar 

  34. H. N. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, D. M. S. Zan, and N. Arsad, Sensors, 2017, 17, 2217.

    Article  Google Scholar 

  35. Y. Li, B. Li, X. Fu, J. Li, C. Li, H. Li, H. Li, C. Liang, H. Wang, L. Zhou, and S. Xin, J. Hard Tissue Biol., 2013, 22, 351.

    Article  CAS  Google Scholar 

  36. Z. Zhang, T. Jiang, K. Ma, X. Cai, Y. Zhou, and Y. Wang, J. Mater. Chem., 2011, 21, 7705.

    Article  CAS  Google Scholar 

  37. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Anal. Chem., 2007, 79, 4215.

    Article  CAS  PubMed  Google Scholar 

  38. C. Liu, Y. Teng, R. Liu, S. Luo, Y. Tang, L. Chen, and Q. Cai, Carbon, 2011, 49, 5312.

    Article  CAS  Google Scholar 

  39. A. J. S. Ahammad, Biosens. Bioelectron., 2013, 9, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emir Baki Denkbas.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiziltan, D., Vural, T., Bayram, C. et al. Development of Titania Nanotube-based Electrochemical Immunosensor and Determination of Prostate Specific Antigen. ANAL. SCI. 34, 789–794 (2018). https://doi.org/10.2116/analsci.17P407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17P407

Keywords

Navigation