Skip to main content
Log in

Development of a Solid-Phase Microextraction/Reflection-Absorption Infrared Spectroscopic Method for the Detection of Chlorinated Aromatic Amines in Aqueous Solutions

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this paper, the reflection-absorption infrared (IR) spectroscopic method combined with the principle of solid-phase micro-extraction (SPME) is proposed to detect chlorinated aromatic amines in aqueous solutions. This proposed method provides simplicity in both the optical system and equipment setup. Compared to the SPME/attenuated total reflection-IR method, this method reduces the cost for internal-reflection elements and optical systems. Meanwhile, it has no SPME/transmission IR method problems, which require high polymer film preparation techniques to obtain a standing film that has no physical/chemical property changes when immersed in an aqueous solution. The typical linear coefficients obtained using this method for chloroanilines in aqueous solutions are around 0.995 and the detection can be lower than 100 ppb. The thickness of the hydrophobic film is relatively important in the SPME/ATR-IR method, but the uncertainty caused by the film thickness can be partially eliminated in the proposed method. This is because the IR signals are proportional to the film thickness and can be corrected using hydrophobic film signals. The low detection limits have also indicated that this proposed method can compete with the currently existing IR methods, but allowing much simpler detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. J. Harrick, “Internal Reflection Spectroscopy”, 1967, Wiley, New York.

    Google Scholar 

  2. A. Messica, A. Greenstein, and A. Katzir, Appl. Optics, 1996, 35, 2274.

    Article  CAS  Google Scholar 

  3. S. Simhony, A. Katzir, and E. M. Kosower, Anal. Chem., 1988, 60, 1908.

    Article  CAS  Google Scholar 

  4. R. Gobel, R. Krska, R. Kellner, J. Kastner, A. Lambrecht, M. Tacke, and A. Katzir, Appl. Spectrosc., 1995, 49, 1174.

    Article  Google Scholar 

  5. P. H. Paul and G. Kychakoff, Appl. Phys. Lett., 1987, 51, 12.

    Article  Google Scholar 

  6. K. Newby, W. M. Reichert, J. D. Andrade, and R. E. Benner, Appl. Opt., 1984, 23, 1812.

    Article  CAS  Google Scholar 

  7. C. L. Arthur and J. Pawliszyn, Anal. Chem., 1990, 62, 2145.

    Article  CAS  Google Scholar 

  8. Z. Zhang, M. Yang, and J. Pawliszyn, Anal. Chem., 1994, 66, 844A.

    Article  Google Scholar 

  9. Z. Zhang and J. Pawliszyn, Anal. Chem., 1993, 65, 1843.

    Article  CAS  Google Scholar 

  10. Z. Zhang and J. Pawliszyn, J. High Resolut. Chromatogr., 1993, 16, 689.

    Article  CAS  Google Scholar 

  11. D. S. Blair, L. W. Burgess, and A. M. Brodsky, Anal. Chem., 1997, 69, 2238.

    Article  CAS  Google Scholar 

  12. R. Krska, R. Kellner, U. Schiessel, M. Tacke, and A. Katzir, Appl. Phys. Lett., 1993, 63, 1868.

    Article  CAS  Google Scholar 

  13. M. C. Ertan-Lamontagne, S. R. Lowry, W. R. Seitz, and S. A. Tomellini, Appl. Spectrosc., 1995, 49, 1170.

    Article  CAS  Google Scholar 

  14. R. Gobel, R. Krska, R. Kellner, R. W. Seitz, and S. A. Tomellini, Appl. Spectrosc., 1994, 48, 678.

    Article  Google Scholar 

  15. J. Heo, M. Rodrigues, S. Saggese, and G. H. Sigel, Jr., Appl. Opt., 1991, 30, 3944.

    Article  CAS  Google Scholar 

  16. J. Yang and J.-W. Her, Anal. Chem., 1999, 71, 1773.

    Article  CAS  Google Scholar 

  17. J. Yang and J.-W. Her, Anal. Chem., 1999, 71, 4690.

    Article  CAS  Google Scholar 

  18. M. Jakusch, M. I. Janotta, B. Mizaikoff, K. Mosbach, and K. Haupt, Anal. Chem., 1999, 71, 4786.

    Article  CAS  Google Scholar 

  19. S. A. Merschman, S. H. Lubbad, and D. C. Tilotta, J. Chromatogr. A, 1998, 829, 377.

    Article  CAS  Google Scholar 

  20. D. L. Heglund and D. C. Tilotta, Environ. Sci. Technol., 1996, 30, 1212.

    Article  CAS  Google Scholar 

  21. D. C. Stahl and D. C. Tilotta, Environ. Sci. Technol., 1999, 33, 814.

    Article  CAS  Google Scholar 

  22. J. Yang, J.-W. Her, and S. H. Chen, Anal. Chem., 1999, 71, 3740.

    Article  CAS  Google Scholar 

  23. J. Yang and J.-W. Her, Anal. Chem., 1999, 72, 878.

    Article  Google Scholar 

  24. S. Laha and R. G. Luthy, Environ. Sci. Technol., 1990, 24, 363.

    Article  CAS  Google Scholar 

  25. M. Dalene and G. Skaping, J. Chromatogr., 1985, 331, 321.

    Article  CAS  Google Scholar 

  26. L. Muller, E. Fattore, and E. Benfenati, J. Chromatogr. A, 1997, 791, 221.

    Article  CAS  Google Scholar 

  27. H. Kataoka, J. Chromatogr. A, 1996, 733, 19.

    Article  CAS  Google Scholar 

  28. J. Yang and C.-P. Tsui, submitted to Environ. Sci. Technol.

  29. G. Socrates, “Infrared Characteristic Group Frequencies”, 1980, John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyisy Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Tsai, FP. Development of a Solid-Phase Microextraction/Reflection-Absorption Infrared Spectroscopic Method for the Detection of Chlorinated Aromatic Amines in Aqueous Solutions. ANAL. SCI. 17, 751–756 (2001). https://doi.org/10.2116/analsci.17.751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17.751

Navigation