Skip to main content
Log in

A Kinetic Method for the Determination of Nitrite by Its Catalytic Effect on the Oxidation of Chlorpromazine with Nitric Acid

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A catalytic spectrophotometric method for the determination of trace amounts of nitrite is proposed. In acidic solution, chlorpromazine (CP) is oxidized by nitric acid to form a red compound, which is further oxidized to a colorless compound. The reaction is accelerated by trace amounts of nitrite and can be followed by measuring the absorbance at 525 nm: nitrite ion is regenerated and multiplied by nitric acid. The absorbance of the reaction increased with an increase in the reaction time, reached a maximum and decreased rapidly. Since the time required for the absorbance to reach the maximum decreased with increasing nitrite concentration, this value was used as the measured parameter for the nitrite determination. Under the optimum experimental conditions (2.3 M nitric acid, 1.2 ×;10–5 M CP, 40°C), nitrite can be determined in the range 0–100 μg l–1. The relative standard deviations (n = 6) are 4.7 and 1.8% for 40 and 100 μg l–1 nitrite, respectively. The detection limit of this method (3σ) is 1.2 μg l–1. This method was successfully applied to a determination of nitrite in natural water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Harrison and S. J. de Mora, “Introductory chemistry for the environmental sciences.”, 1996, Cambridge University Press, 179–181.

    Book  Google Scholar 

  2. J. K. Hurst and S. V. Lumar, Chem. Res. Toxicol., 1997, 10, 804.

    Article  Google Scholar 

  3. K. J. Reszka, Z. Matuszak, and C. F. Chignell, Chem. Res. Toxicol., 1997, 10, 1325.

    Article  CAS  Google Scholar 

  4. C. J. Wang, H. P. Huang, T. H. Tseng, Y. L. Lin, and S. J. Shiow, Arch. Toxicol., 1995, 70, 5.

    Article  Google Scholar 

  5. A. A. Ensafi and A. Kazemzadeh, Anal. Chim. Acta. 1999, 382, 15.

    Article  CAS  Google Scholar 

  6. K. Horita, G. F. Wang, and M. Satake, Analyst. 1997, 122, 1569.

    Article  CAS  Google Scholar 

  7. R. S. Guerrero, C. G. Benito, and J. M. Calatayud, Talanta. 1996, 43, 239.

    Article  Google Scholar 

  8. M. J. Ahmed, C. D. Staliks, S. M. Tzouwara-Karayanni, and M. I. Krayannis, Talanta. 1996, 43, 1009.

    Article  CAS  Google Scholar 

  9. I. A. Pettas, S. I. Lafis, and M. I. Karayannis, Anal. Chim. Acta. 1998, 376, 331.

    Article  CAS  Google Scholar 

  10. M. N. Abbas and G. A. Mostafa, Anal. Chim. Acta. 2000, 410, 185.

    Article  CAS  Google Scholar 

  11. M. Miro, A. Cladera, J. M. Estela, and V. Cerda, Analyst. 2000, 125, 943.

    Article  CAS  Google Scholar 

  12. G. M. Greenway, S. J. Haswell, and P. H. Petsul, Anal. Chim. Acta. 1999, 387, 1.

    Article  CAS  Google Scholar 

  13. T. Okutani, A. Sakuragawa, S. Kamikura, M. Shimura, and S. Azuchi, Anal. Sci., 1991, 7, 793.

    Article  CAS  Google Scholar 

  14. R. Kadowaki, S. Nakano, and T. Kawashima, Talanta. 1999, 48, 103.

    Article  CAS  Google Scholar 

  15. I. S. Forrest, F. M. Forrest, and M. Berger, Biochim. Biophys. Acta. 1958, 29, 441.

    Article  CAS  Google Scholar 

  16. T. Tomiyasu, H. Sakamoto, and N. Yonehara, Anal. Chim. Acta. 1996, 320, 217.

    Article  CAS  Google Scholar 

  17. T. Tomiyasu, H. Sakamoto, and N. Yonehara, Anal. Sci., 1992, 8, 293.

    Article  CAS  Google Scholar 

  18. T. Tomiyasu, H. Sakamoto, and N. Yonehara, Anal. Sci., 1994, 10, 293.

    Article  CAS  Google Scholar 

  19. T. Tomiyasu, H. Sakamoto, and N. Yonehara, Anal. Sci., 1996, 12, 243.

    Article  CAS  Google Scholar 

  20. T. Tomiyasu, H. Sakamoto, and N. Yonehara, Anal. Sci., 1996, 12, 507.

    Article  CAS  Google Scholar 

  21. T. Tomiyasu, H. Sakamoto, and N. Yonehara, Anal. Sci., 1994, 10, 761.

    Article  CAS  Google Scholar 

  22. T. Tomiyasu and N. Yonehara, Anal. Sci., 1996, 12, 899.

    Article  CAS  Google Scholar 

  23. B. Liang, M. Iwatsuki, and T. Fukasawa, Analyst. 1994, 119, 2113.

    Article  CAS  Google Scholar 

  24. T. Tomiyasu, Anal. Chim. Acta. 1997, 349, 43.

    Article  CAS  Google Scholar 

  25. D. M. Yost and H. Russel, Jr., “Systematic Inorganic Chemistry of the Fifth-and-Sixth-Group Nonmetallic Elements.”, 1944, Prentice-Hall, New York.

    Google Scholar 

  26. K. Hirayama and N. Unohara, Anal. Chem., 1988, 60, 2573.

    Article  CAS  Google Scholar 

  27. T. Tomiyasu, N. Teshima, S. Nakano, and T. Kawashima, Talanta. 1998, 47, 1093.

    Article  CAS  Google Scholar 

  28. S. Abe, T. Saito, and M. Suda, Anal. Chim. Acta. 1986, 181, 203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tomiyasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomiyasu, T., Konagayoshi, Y., Anazawa, K. et al. A Kinetic Method for the Determination of Nitrite by Its Catalytic Effect on the Oxidation of Chlorpromazine with Nitric Acid. ANAL. SCI. 17, 1437–1440 (2001). https://doi.org/10.2116/analsci.17.1437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17.1437

Navigation