Skip to main content
Log in

Broadband Vibrational Sum Frequency Generation Spectroscopy of a Liquid Surface

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An important advance in surface science has been the evolution of sum frequency generation to the application of studying surface structure and chemistry of liquid surfaces at the molecular-level by probing the vibrational signatures of surface molecules. Recently, broad-bandwidth sum frequency generation (BBSFG) spectroscopy has become an important tool for investigating gas-solid interfaces. BBSFG spectroscopy allows, theoretically, a surface sum frequency spectrum to be acquired within one pulse of the laser. In this paper, the viability of BBSFG to study inherently small nonlinear response interfaces and the time-resolving capability of this surface-selective technology are demonstrated. Presented here are the first published accounts of spectra from a liquid surface utilizing the broad-bandwidth sum frequency technology with acquisition times as low as 500 milliseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Solomon, Rev. Geophys., 1999, 37, 275.

    Article  CAS  Google Scholar 

  2. S. Solomon, R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, Nature, 1986, 321, 755.

    Article  CAS  Google Scholar 

  3. M. A. Tolbert and O. B. Toon, Science, 2001, 292, 61.

    Article  CAS  Google Scholar 

  4. A. R. Ravishankara, Science, 1997, 276, 1058.

    Article  CAS  Google Scholar 

  5. R. G. Luthy, G. R. Aiken, M. L. Brusseau, S. D. Cunningham, P. M. Gschwend, J. J. Pignatello, M. Reinhard, S. J. Traina, W. J. Weber, Jr., and J. C. Westall, Environ. Sci. Technol., 1997, 31, 3341.

    Article  CAS  Google Scholar 

  6. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, Opt. Lett., 1998, 23, 1594.

    Article  CAS  Google Scholar 

  7. K. A. Briggman, J. C. Stephenson, W. E. Wallace, and L. J. Richter, J. Phys. Chem. B, 2001, 105, 2785.

    Article  CAS  Google Scholar 

  8. S. Funk, M. Bonn, D. N. Denzier, C. Hess, M. Wolf, and G. Ertl, J. Chem. Phys., 2000, 112, 9888.

    Article  CAS  Google Scholar 

  9. M. Bonn, C. Hess, S. Funk, J. H. Miners, B. N. J. Persson, M. Wolf, and G. Ertl, Phys. Rev. Lett., 2000, 84, 4653.

    Article  CAS  Google Scholar 

  10. D. Star, T. Kikteva, and G. W. Leach, J. Chem. Phys., 1999, 111, 14.

    Article  CAS  Google Scholar 

  11. C. Hess, M. Bonn, S. Funk, and M. Wolf, Chem. Phys. Lett., 2000, 325, 139.

    Article  CAS  Google Scholar 

  12. C. Hess, M. Wolf, and M. Bonn, Phys. Rev. Lett., 2000, 85, 4341.

    Article  CAS  Google Scholar 

  13. E. W. M. Van der Ham, Q. H. F. Vrehen, and E. R. Eliel, Surf. Sci., 1996, 368, 96.

    Article  Google Scholar 

  14. E. L. Hommel and H. C. Allen, Anal. Sci., 2001, 17, 137.

    Article  CAS  Google Scholar 

  15. H. C. Allen, E. A. Raymond, and G. L. Richmond, J. Phys. Chem., 2001, 105, 1649.

    Article  CAS  Google Scholar 

  16. Y. R. Shen, Solid State Commun., 1998, 108, 399.

    Article  CAS  Google Scholar 

  17. U. L. Yeh, C. Zhang, H. Held, A. M. Mebel, X. Wei, S. H. Lin, and Y. R. Shen, J. Chem. Phys., 2001, 114, 1837.

    Article  CAS  Google Scholar 

  18. J. Lobau and K. Wolfrum, J. Opt. Soc. Am. B, 1997, 14, 2505.

    Article  CAS  Google Scholar 

  19. P. S. Cremer, X. Su, G. A. Somorjai, and Y. R. Shen, J. Mol. Catal. A: Chem., 1998, 131, 225.

    Article  CAS  Google Scholar 

  20. C. T. Williams, Y. Yang, and C. D. Bain, Langmuir, 2000, 16, 23343.

    Article  Google Scholar 

  21. S. Baldelli, C. Schnitzer, and M. J. Shultz, Chem. Phys. Lett., 1999, 302, 157.

    Article  CAS  Google Scholar 

  22. S. Baldelli, C. Schnitzer, M. J. Shultz, and D. J. Campbell, J. Phys. Chem. B, 1997, 101, 10435.

    Article  CAS  Google Scholar 

  23. L. F. Scatena, M. G. Brown, and G. L. Richmond, Science, 2001, 292, 908.

    Article  CAS  Google Scholar 

  24. N. Bloembergen and P. S. Pershan, Phys. Rev., 1962, 128, 606.

    Article  Google Scholar 

  25. Y. R. Shen, “The principles of nonlinear optics”, 1st ed., 1984, John Wiley & Sons, New York.

    Google Scholar 

  26. C. Hirose, N. Akamatsu, and K. Domen, Appl. Spectrosc., 1992, 46, 1051.

    Article  Google Scholar 

  27. B. Dick, A. Gierulski, and G. Marowsky, Appl. Phys. B, 1985, 38, 107.

    Article  Google Scholar 

  28. A. Morita and J. T. Hynes, Chem. Phys., 2000, 258, 371.

    Article  CAS  Google Scholar 

  29. D. E. Gragson, B. M. McCarthy, and G. L. Richmond, J. Am. Chem. Soc., 1997, 119, 6144.

    Article  CAS  Google Scholar 

  30. J. Boniface, Q. Shi, Y. Q. Li, J. L. Cheung, O. V. Rattigan, P. Davidovits, D. R. Worsnop, J. T. Jayne, and C. E. Kolb, J. Phys. Chem. A, 2000, 104, 7502.

    Article  CAS  Google Scholar 

  31. J. A. Shorter, W. J. De Bruyn, J. Ju, E. Swartz, P. Davidovits, D. R. Worsnop, M. S. Zahniser, and C. E. Kolb, Environ. Sci. Technol., 1995, 29, 1171.

    Article  CAS  Google Scholar 

  32. T. Moise and Y. Rudich, J. Geophys. Res., 2000, 105, 14667.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather C. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hommel, E.L., Ma, G. & Allen, H.C. Broadband Vibrational Sum Frequency Generation Spectroscopy of a Liquid Surface. ANAL. SCI. 17, 1325–1329 (2001). https://doi.org/10.2116/analsci.17.1325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17.1325

Navigation