Skip to main content
Log in

Solid Phase Extraction of Ultra-Trace Amounts of Ag+ by Using Octadecyl Silica Membrane Disks Modified with a New Fulvalen Derivative

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A simple method for the rapid extraction and determination of ultra-trace amounts of Ag+ ions using octadecyl-bonded silica membrane disks modified with a recently synthesized fulvalen (tetramethyltetrathiafulvalen) (TMTTF) and graphite furnace atomic absorption spectrometry is presented. The extraction efficiency and influence of the flow rate, pH, nature of the counter ion and type and the least amount of eluent for the stripping of Ag+ from disks and breakthrough volume were evaluated. The maximum capacity of the membrane disks modified by 5 mg of TMTTF used was found to be 482 ± 6 µg Ag+. The detection limit of the proposed method is 1.0 ng/dm3. The method was applied to the recovery of Ag+ ions from different synthetic and water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Renner, in “Ulmanns Encyclopadie der Technischen-Chemie”, 4th ed., 1982, Vertag Chemie, Weinheim.

    Google Scholar 

  2. EPA (Enviromental Protection Agency), Ambient Water Quality Criteria for Silver, EPA 4405-80-071, 1980, Office of Water Regulations, Washington, D.C.

    Google Scholar 

  3. E. Meian (ed.), “Metals and their Compounds in the Enviroment”, 1991, VCH, New York.

    Google Scholar 

  4. A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, “Standard Methods for the Examination of Water and Waste Water”, 19th ed., 1995, American Public Health Association, Washington, D.C.

    Google Scholar 

  5. Z. Marczenko, “Separation and Spectrophotometric Determination of Elements”, 1986, Ellishorwood, London.

    Google Scholar 

  6. S. Chung, W. Kim, S. B. Park, D. Y. Kim, and S. S. Lee, Talanta, 1997, 44, 1291.

    Article  CAS  Google Scholar 

  7. L. T. Dupuis and W. J. Holland, Mikrochim. Acta, 1980 I, 29.

    Article  Google Scholar 

  8. P. W. Beaupre, W. J. Holand, and K. E. Gerow, Mikrochim. Acta, 1983 I, 137.

    Article  Google Scholar 

  9. E. B. Sandell and J. J. Neumayer, Anal. Chem., 1951, 23, 1863.

    Article  CAS  Google Scholar 

  10. K. Fukuda and A. Mizuike, Anal. Chim. Acta, 1970, 51, 77.

    Article  CAS  Google Scholar 

  11. A. Mizuike and K. Fukuda, Anal. Chim. Acta, 1969, 44, 193.

    Article  CAS  Google Scholar 

  12. A. V. Rangnekar and S. M. Khopkar, Mikrochim. Acta, 1965, 642.

    Google Scholar 

  13. S. Kallmann, Talanta, 1986, 33, 75.

    Article  CAS  Google Scholar 

  14. M. Shamsipur and M. H. Mashhadizadeh, Fresenius J. Anal. Chem., 2000, 367, 246.

    Article  CAS  Google Scholar 

  15. R. M. Izatt, J. S. Bradshaw, and R. L. Bruening, Pure Appl. Chem., 1996, 68, 1237.

    Article  CAS  Google Scholar 

  16. D. F. Hagen, C. G. Markell, J. A. Schmitt, and D. D. Blevins, Anal. Chim. Acta, 1990, 236, 157.

    Article  CAS  Google Scholar 

  17. Y. Yamini and M. Ashraf-Khorassani, J. High Resolut. Chromatogr., 1994, 17, 634.

    Article  CAS  Google Scholar 

  18. D. C. Messea and L. T. Taylor, J. Chromatogr. Sci., 1995, 33, 290.

    Article  Google Scholar 

  19. Y. Yamini and M. Shamsipur, Talanta, 1996, 43, 2117.

    Article  CAS  Google Scholar 

  20. Y. Yamini, N. Alizadeh, and M. Shamsipur, Sep. Sci. Technol., 1997, 32, 2078.

    Article  Google Scholar 

  21. Y. Yamini, N. Alizadeh, and M. Shamsipur, Anal. Chim. Acta, 1997, 355, 69.

    Article  CAS  Google Scholar 

  22. O. R. Hashemi, M. Kargar-Razi, F. Raoufi, A. Moghimi, H. Aghabozorg, and M. R. Ganjali, Microchem. J., 2001

    Google Scholar 

  23. N. I. Shcherbinina, G. V. Myasoedova, T. A. Khabazova, E. Y. Danilova, O. P. Shroeva, G. R. Ishmiyarova, I. E. Nikitina, and L. N. Bannykh, Zh. Anal. Khim., 1990, 45, 2137.

    CAS  Google Scholar 

  24. P. Ramadevi, U. V. Naidu, and G. R. K. Naidu, Radioanal. Nucl. Chem., 1988, 128, 257.

    Article  CAS  Google Scholar 

  25. M. M. Gomes-Gomes, M. M. Hidalgo Garcia, and M. A. Palacio Corvillo, Analyst, 1995, 120, 1911.

    Article  Google Scholar 

  26. H. J. Cristau, F. Darvich, E. Torreilles, and J. M. Fabea, Tetrahedron. Lett., 1998, 39, 2103.

    Article  CAS  Google Scholar 

  27. ACS Committee on Environmental Improvement, Anal. Chem., 1980, 52, 2242.

    Article  Google Scholar 

  28. J. D. Ingle and S. R. Crouch, “Spectrochemical Analysis”, 1988, Prentice Hall, Englewood Cliffs.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ganjali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajiagha-Babaei, L., Ghasemi, Z., Darviche, F. et al. Solid Phase Extraction of Ultra-Trace Amounts of Ag+ by Using Octadecyl Silica Membrane Disks Modified with a New Fulvalen Derivative. ANAL. SCI. 17, 1305–1308 (2001). https://doi.org/10.2116/analsci.17.1305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17.1305

Navigation