Skip to main content
Log in

Unusually Slow Extraction Rate and Mechanism of Iron(III) with Trifluoroacetylacetone in Triton X-100 Micellar System. Part I. Extraction Routes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The rate of formation/extraction of iron(III) with trifluoroacetylacetone in Triton X-100 micellar solution at 298 K was measured by stopped-flow spectrophotometry to identify the route and mechanism of the extraction process. The rate was first order with respect to the metal ion and the extractant in the bulk aqueous phase and inverse first order to the hydrogen ion when the formation of extractable tris-complex was small. The rate obtained under such conditions agreed well with that of complex formation in the single aqueous solution; this suggests that the whole reactions is controlled only by the formation of the mono-complex in the bulk aqueous phase. On the other hand, the rate did not show clear dependencies on the ligand and the hydrogen ion, and was slower than the one expected from the complex formation in the aqueous solution when the formation of the extractable tris-complex was dominant. A slow material transport of the tris-complex from the bulk aqueous phase to the micellar pseudophase was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Fendler and E. J. Fendler, “Catalysis in Micellar and Macromolecular Systems”, 1975, Chap. 2, Academic Press, New York.

    Google Scholar 

  2. H. Watanabe, “Solution Chemistry of Surfactants”, ed. K. L. Mittal and E. J. Fendler, 1982, Vol. II, Plenum Press, New York, 1305.

  3. J. Georges, Spectrochim. Acta Rev., 1990, 13, 27.

    CAS  Google Scholar 

  4. J. Szymanowski and C. Tondre, Solvent Extr. Ion Exch., 1994, 12, 873.

    Article  CAS  Google Scholar 

  5. J. G. Huddleston, H. D. Willauer, S. T. Griffin, and R. D. Rogers, Ind. Eng. Chem. Res., 1999, 38, 2523.

    Article  CAS  Google Scholar 

  6. K. Hayashi, Y. Sasaki, S. Tagashira, and E. Kosaka, Anal. Chem., 1986, 58, 1444.

    Article  CAS  Google Scholar 

  7. R. P. Paradkar and R. R. Williams, Anal. Chem., 1994, 66, 2752.

    Article  CAS  Google Scholar 

  8. B. R. Fillipi, J. F. Scamehorn, S. D. Christian, and R. W. Taylor, J. Membrane Sci., 1998, 145, 27.

    Article  CAS  Google Scholar 

  9. H. Watanabe, T. Saitoh, T. Kamidate, and K. Haraguchi, Mikrochim. Acta, 1992, 106, 83.

    Article  CAS  Google Scholar 

  10. S. Muralidharan, W. Yu, S. Tagashira, and H. Freiser, Langmuir, 1990, 6, 1190.

    Article  CAS  Google Scholar 

  11. S.-G. Son, M. Hebrant, P. Tecilla, P. Scrimin, and C. Tondre, J. Chem., 1992, 96, 1 1072.

    Google Scholar 

  12. K. Inaba, S. Muralidharan, and H. Freiser, Anal. Chem., 1993, 65, 1510.

    Article  CAS  Google Scholar 

  13. J. K. McCulloch, D. Fornasiero, J. M. Perera, B. S. Murray, G. W. Stevens, and F. Grieser, J. Colloid Interface Sci., 1993, 157, 180.

    Article  CAS  Google Scholar 

  14. T. Saitoh, H. Hoshino, and T. Yotsuyanagi, J. Chem. Soc. Faraday Trans., 1994, 90, 479.

    Article  CAS  Google Scholar 

  15. J. Szymanowski, “Value Adding Through Solvent Extraction”, ed. D. C. Shallcross, R. Paimin, and L. M. Prvcic, 1996, Vol. I, University of Melbourne, Melbourne, 219.

  16. G. Ma, H. Freiser, and S. Muralidharan, Anal. Chem., 1997, 69, 2827.

    Article  CAS  Google Scholar 

  17. K. Inaba, “Value Adding Through Solvent Extraction”, ed. D. C. Shallcross, R. Paimin, and L. M. Prvcic, 1996, Vol. I, University of Melbourne, Melbourne, 57.

  18. K. Inaba, Langmuir, 1997, 13, 1501.

    Article  CAS  Google Scholar 

  19. K. Inaba, unpublished data.

  20. K. Kalyanasundaram and J. K. Thomas, J. Am. Chem. Soc., 1977, 99, 2039.

    Article  CAS  Google Scholar 

  21. I. V. Berezin, K. Martinek, and A. K. Yatsimirskii, Russ. Chem. Rev., 1973, 42, 787.

    Article  Google Scholar 

  22. L. Ciavatta and M. Grimaldi, J. Inorg. Nucl. Chem., 1975, 37, 163.

    Article  CAS  Google Scholar 

  23. T. Sekine and K. Inaba, Bull. Chem. Soc. Jpn., 1982, 55, 3773.

    Article  CAS  Google Scholar 

  24. K. Inaba, N. Itoh, Y. Matsuno, and T. Sekine, Bull. Chem. Soc. Jpn., 1985, 58, 2176.

    Article  CAS  Google Scholar 

  25. K. Inaba and T. Sekine, Anal. Sci., 1987, 3, 117.

    Article  CAS  Google Scholar 

  26. K. Inaba, Anal. Sci., Part II, in this issue.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuho Inaba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, K. Unusually Slow Extraction Rate and Mechanism of Iron(III) with Trifluoroacetylacetone in Triton X-100 Micellar System. Part I. Extraction Routes. ANAL. SCI. 16, 811–817 (2000). https://doi.org/10.2116/analsci.16.811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.16.811

Navigation