Skip to main content

Advertisement

SpringerLink
An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function
Download PDF
Download PDF
  • Open Access
  • Published: 04 August 2022

An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function

  • Mitja Nedic  ORCID: orcid.org/0000-0001-7867-58741 

Czechoslovak Mathematical Journal volume 73, pages 117–134 (2023)Cite this article

  • 73 Accesses

  • Metrics details

Abstract

We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J. Agler, J. E. McCarthy, N. J. Young: Operator monotone functions and Löwner functions of several variables. Ann. Math. (2) 176 (2012), 1783–1826.

    Article  MATH  Google Scholar 

  2. N. I. Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis. Hafner Publishing, New York, 1965.

    MATH  Google Scholar 

  3. N. Aronszajn: On a problem of Weyl in the theory of singular Sturm-Liouville equations. Am. J. Math. 79 (1957), 597–610.

    Article  MATH  Google Scholar 

  4. N. Aronszajn, R. D. Brown: Finite-dimensional perturbations of spectral problems and variational approximation methods for eigenvalue problems. I. Finite-dimensional perturbations. Stud. Math. 36 (1970), 1–76.

    Article  MATH  Google Scholar 

  5. A. Bernland, A. Luger, M. Gustafsson: Sum rules and constraints on passive systems. J. Phys. A, Math. Theor. 44 (2011) Article ID 145205, 20 pages.

  6. W. Cauer: The Poisson integral for functions with positive real part. Bull. Am. Math. Soc. 38 (1932), 713–717.

    Article  MATH  Google Scholar 

  7. W. F. Donoghue, Jr.: On the perturbation of spectra. Commun. Pure Appl. Math. 18 (1965), 559–579.

    Article  MATH  Google Scholar 

  8. Y. Ivanenko, M. Gustafsson, B. L. G. Jonsson, A. Luger, B. Nilsson, S. Nordebo, J. Toft: Passive approximation and optimization using B-splines. SIAM J. Appl. Math. 79 (2019), 436–458.

    Article  MATH  Google Scholar 

  9. Y. Ivanenko, M. Nedic, M. Gustafsson, B. L. G. Jonsson, A. Luger, S. Nordebo: Quasi-Herglotz functions and convex optimization. Royal Soc. Open Sci. 7 (2020), Article ID 191541, 15 pages.

  10. I. S. Kac, M. G. Kreĭn: R-functions — analytic functions mapping the upper halfplane into itself. Nine Papers in Analysis. American Mathematical Society Translations: Series 2, Volume 103. AMS, Providence, 1974, pp. 1–18.

    MATH  Google Scholar 

  11. P. Koosis: Introduction to Hp Spaces. Cambridge Tracts in Mathematics 115. Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  12. A. Luger, M. Nedic: A characterization of Herglotz-Nevanlinna functions in two variables via integral representations. Ark. Mat. 55 (2017), 199–216.

    Article  MATH  Google Scholar 

  13. A. Luger, M. Nedic: Herglotz-Nevanlinna functions in several variables. J. Math. Anal. Appl. 472 (2019), 1189–1219.

    Article  MATH  Google Scholar 

  14. A. Luger, M. Nedic: On quasi-Herglotz functions in one variable. Available at https://arxiv.org/abs/1909.10198v2 (2019), 35 pages.

  15. A. Luger, M. Nedic: Geometric properties of measures related to holomorphic functions having positive imaginary or real part. J. Geom. Anal. 31 (2021), 2611–2638.

    Article  MATH  Google Scholar 

  16. M. Nedic: Characterizations of the Lebesgue measure and product measures related to holomorphic functions having non-negative imaginary or real part. Int. J. Math. 31 (2020), Article ID 2050102, 27 pages.

  17. R. Nevanlinna: Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem. Ann. Acad. Sci. Fenn., Ser. A 18 (1922), 1–53. (In German.)

    MATH  Google Scholar 

  18. B. Simon: The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137 (1998), 82–203.

    Article  MATH  Google Scholar 

  19. V. S. Vladimirov: Holomorphic functions with non-negative imaginary part in a tubular region over a cone. Mat. Sb., Nov. Ser. 79 (1969), 128–152. (In Russian.)

    MATH  Google Scholar 

  20. V. S. Vladimirov: Generalized Functions in Mathematical Physics. Mir, Moscow, 1979.

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dale Frymark for many enthusiastic discussions on the subject. The author would also like to thank the anonymous referee for suggesting to expand the article with a section on complex measures.

Funding

Open access funding provided by University of Helsinki.

Author information

Authors and Affiliations

  1. Department of Mathematics and Statistics, University of Helsinki, PO Box 68, FI-00014, Helsinki, Finland

    Mitja Nedic

Authors
  1. Mitja Nedic
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mitja Nedic.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nedic, M. An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Czech Math J 73, 117–134 (2023). https://doi.org/10.21136/CMJ.2022.0455-21

Download citation

  • Received: 08 December 2021

  • Published: 04 August 2022

  • Issue Date: March 2023

  • DOI: https://doi.org/10.21136/CMJ.2022.0455-21

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Herglotz-Nevanlinna function
  • Cauchy-type function
  • symmetric extension
  • Stieltjes inversion formula

MSC 2020

  • 32A36
  • 32A99
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.