Skip to main content

Advertisement

SpringerLink
Möbius metric in sector domains
Download PDF
Download PDF
  • Open Access
  • Published: 29 September 2022

Möbius metric in sector domains

  • Oona Rainio  ORCID: orcid.org/0000-0002-7775-76561 &
  • Matti Vuorinen  ORCID: orcid.org/0000-0002-1734-82281 

Czechoslovak Mathematical Journal volume 73, pages 213–236 (2023)Cite this article

  • 38 Accesses

  • Metrics details

Abstract

The Möbius metric δG is studied in the cases, where its domain G is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J. Chen, P. Hariri, R. Klén, M. Vuorinen: Lipschitz conditions, triangular ratio metric, and quasiconformal maps. Ann. Acad. Sci. Fenn., Math. 40 (2015) 683–709.

    Article  MATH  Google Scholar 

  2. F. W. Gehring, K. Hag: The Ubiquitous Quasidisk. Mathematical Surveys and Monographs 184. AMS, Providence, 2012.

    MATH  Google Scholar 

  3. F. W. Gehring, B. G. Osgood: Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 36 (1979) 50–74.

    Article  MATH  Google Scholar 

  4. F. W. Gehring, B. P. Palka: Quasiconformally homogeneous domains. J. Anal. Math. 30 (1976) 172–199.

    Article  MATH  Google Scholar 

  5. P. Hariri, R. Klén, M. Vuorinen: Local convexity of metric balls. Monatsh. Math. 186 (2018) 281–298.

    Article  MATH  Google Scholar 

  6. P. Hariri, R. Klén, M. Vuorinen: Conformally Invariant Metrics and Quasiconformal Mappings. Springer Monographs in Mathematics. Springer, Cham, 2020.

    Book  MATH  Google Scholar 

  7. P. Hariri, M. Vuorinen, X. Zhang: Inequalities and bi-Lipschitz conditions for the triangular ratio metric. Rocky Mt. J. Math. 47 (2017) 1121–1148.

    Article  MATH  Google Scholar 

  8. P. Hästö: A new weighted metric: The relative metric. I. J. Math. Anal. Appl. 274 (2002) 38–58.

    Article  MATH  Google Scholar 

  9. P. Hästö, Z. Ibragimov, D. Minda, S. Ponnusamy, S. Swadesh: Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis. In the Tradition of Ahlfors-Bers. IV. Contemporary Mathematics 432. AMS, Providence, 2007, pp. 63–74.

    MATH  Google Scholar 

  10. H. Lindén: Quasihyperbolic geodesics and uniformity in elementary domains. Ann. Acad. Sci. Fenn. Math. Diss. 146 (2005) 50 pages.

  11. M. M. S. Nasser, O. Rainio, M. Vuorinen: Condenser capacity and hyperbolic perimeter. Comput. Math. Appl. 105 (2022) 54–74.

    Article  MATH  Google Scholar 

  12. O. Rainio: Intrinsic quasi-metrics. Bull. Malays. Math. Sci. Soc. (2) 44 (2021) 2873–2891.

    Article  MATH  Google Scholar 

  13. O. Rainio, M. Vuorinen: Introducing a new intrinsic metric. Result. Math. 77 (2022) Article ID 71, 18 pages.

  14. O. Rainio, M. Vuorinen: Triangular ratio metric under quasiconformal mappings in sector domains. To appear in Comput. Methods Funct. Theory (2022).

  15. P. Seittenranta: Möbius-invariant metrics. Math. Proc. Camb. Philos. Soc. 125 (1999) 511–533.

    Article  MATH  Google Scholar 

  16. J. Väisälä: Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics 229. Springer, Berlin, 1971.

    MATH  Google Scholar 

  17. M. Vuorinen: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics 1319. Springer, Berlin, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics and Statistics, University of Turku, Turun yliopisto, FI-20014, Turku, Finland

    Oona Rainio & Matti Vuorinen

Authors
  1. Oona Rainio
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Matti Vuorinen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Oona Rainio.

Additional information

Oona Rainio’s research was funded by the University of Turku Graduate School UTUGS. Open access funding provided by University of Turku.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rainio, O., Vuorinen, M. Möbius metric in sector domains. Czech Math J 73, 213–236 (2023). https://doi.org/10.21136/CMJ.2022.0050-22

Download citation

  • Received: 07 February 2022

  • Published: 29 September 2022

  • Issue Date: March 2023

  • DOI: https://doi.org/10.21136/CMJ.2022.0050-22

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • hyperbolic geometry
  • hyperbolic metric
  • intrinsic geometry
  • Möbius metric
  • quasiregular mapping
  • triangular ratio metric

MSC 2020

  • 51M10
  • 30C62
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.