A Note on Skolem-Noether Algebras


The paper was motivated by Kovacs’ paper (1973), Isaacs’ paper (1980) and a recent paper, due to Bresar et al. (2018), concerning Skolem-Noether algebras. Let K be a unital commutative ring, not necessarily a field. Given a unital K-algebra S, where K is contained in the center of S, n ∈ ℕ, the goal of this paper is to study the question: when can a homomorphism ϕ: Mn(K) → Mn(S) be extended to an inner automorphism of Mn(S)? As an application of main results presented in the paper, it is proved that if S is a semilocal algebra with a central separable subalgebra R, then any homomorphism from R into S can be extended to an inner automorphism of S.

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Brešar, C. Hanselka, I. Klep, J. Volčič: Skolem-Noether algebras. J. Algebra 498 (2018), 294–314.

    MathSciNet  Article  Google Scholar 

  2. [2]

    F. DeMeyer, E. Ingraham: Separable Algebras over Commutative Rings. Lecture Notes in Mathematics 181, Springer, Berlin, 1971.

    Book  Google Scholar 

  3. [3]

    I. N. Herstein: Noncommutative Rings. The Carus Mathematical Monographs 15, Mathematical Association of America, New York, 1968.

    MATH  Google Scholar 

  4. [4]

    I. M. Isaacs: Automorphisms of matrix algebras over commutative rings. Linear Algebra Appl. 31 (1980), 215–231.

    MathSciNet  Article  Google Scholar 

  5. [5]

    I. Kaplansky: Fields and Rings. Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, 1969.

    MATH  Google Scholar 

  6. [6]

    A. Kovacs: Homomorphisms of matrix rings into matrix rings. Pac. J. Math. 49 (1973), 161–170.

    MathSciNet  Article  Google Scholar 

  7. [7]

    T. Y. Lam: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131, Springer, New York, 1991.

    Book  Google Scholar 

  8. [8]

    N. H. McCoy: Subdirectly irreducible commutative rings. Duke Math. J. 12 (1945), 381–387.

    MathSciNet  Article  Google Scholar 

  9. [9]

    A. Milinski: Skolem-Noether theorems and coalgebra actions. Commun. Algebra 21 (1993), 3719–3725.

    MathSciNet  Article  Google Scholar 

  10. [10]

    A. Rosenberg, D. Zelinsky: Automorphisms of separable algebras. Pac. J. Math. 11 (1961), 1109–1117.

    MathSciNet  Article  Google Scholar 

  11. [11]

    L. Rowen: Some results on the center of a ring with polynomial identity. Bull. Am. Math. Soc. 79 (1973), 219–223.

    MathSciNet  Article  Google Scholar 

  12. [12]

    J. B. Srivastava, S. K. Shah: Semilocal and semiregular group rings. Indag. Math. 42 (1980), 347–352.

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to express their thanks to the referee for valuable suggestions and careful reading.

Author information



Corresponding author

Correspondence to Tsiu-Kwen Lee.

Additional information

The work of T.-K. Lee was supported in part by the Ministry of Science and Technology of Taiwan (MOST 107-2115-M-002-018-MY2) and the NCTS (Taipei Office).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, J., Lee, TK. & Park, S. A Note on Skolem-Noether Algebras. Czech Math J 71, 137–154 (2021). https://doi.org/10.21136/CMJ.2020.0215-19

Download citation


  • Skolem-Noether algebra
  • (inner) automorphism
  • matrix algebra
  • central simple algebra
  • central separable algebra
  • semilocal ring
  • unique factorization domain (UFD)
  • stably finite ring
  • Dedekind-finite ring

MSC 2020

  • 16K20
  • 16W20
  • 16S50