Skip to main content
Log in

On g-Natural Conformal Vector Fields on Unit Tangent Bundles

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We study conformal and Killing vector fields on the unit tangent bundle, over a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian g-natural metric. We characterize the conformal and Killing conditions for classical lifts of vector fields and we give a full classification of conformal fiber-preserving vector fields on the unit tangent bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. K. Abbassi: Métriques naturelles sur le fibré tangent à une variété Riemannienne. Editions universitaires europeennes, Paris, 2012. (In French.)

  2. M. T. K. Abbassi, N. Amri, G. Calvaruso: Kaluza-Klein type Ricci solitons on unit tangent sphere bundles. Differ. Geom. Appl. 59 (2018), 184–203.

    Article  MathSciNet  Google Scholar 

  3. M. T. K. Abbassi, G. Calvaruso: g-natural contact metrics on unit tangent sphere bundies. Monaths. Math. 151 (2007), 89–109.

    Article  Google Scholar 

  4. M. T. K. Abbassi, G. Calvaruso: g-natural metrics of constant curvature on unit tangent sphere bundles. Arch. Math., Brno 48 (2012), 81–95.

    Article  MathSciNet  Google Scholar 

  5. M. T. K. Abbassi, O. Kowalski: On g-natural metrics with constant scalar curvature on unit tangent sphere bundles. Topics in Almost Hermitian Geometry and Related Fields. World Scientific, Hackensack, 2005, pp. 1–29.

    Book  Google Scholar 

  6. M. T. K. Abbassi, O. Kowalski: Naturality of homogeneous metrics on Stiefel manifolds SO(m + 1)/SO(m − 1). Differ. Geom. Appl. 28 (2010), 131–139.

    Article  MathSciNet  Google Scholar 

  7. M. T. K. Abbassi, O. Kowalski: On Einstein Riemannian g-natural metrics on unit tangent sphere bundles. Ann. Global Anal. Geom. 38 (2010), 11–20.

    Article  MathSciNet  Google Scholar 

  8. M. T. K. Abbassi, M. Sarih: Killing vector fields on tangent bundles with Cheeger-Gromoll metric. Tsukuba J. Math. 27(2003), 295–306.

    Article  MathSciNet  Google Scholar 

  9. M. T. K. Abbassi, M. Sarih: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math., Brno 41 (2005), 71–92.

    MathSciNet  MATH  Google Scholar 

  10. M. T. K. Abbassi, M. Sarih: On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differ. Geom. Appl. 22 (2005), 19–47.

    Article  MathSciNet  Google Scholar 

  11. M. Benyounes, E. Loubeau, L. Todjihounde: Harmonic maps and Kaluza-Klein metrics on spheres. Rocky Mt. J. Math. 42 (2012), 791–821.

    Article  MathSciNet  Google Scholar 

  12. G. Calvaruso, V. Martín-Molina: Paracontact metric structures on the unit tangent sphere bundle. Ann. Mat. Pura Appl. (4) 194 (2015), 1359–1380.

    Article  MathSciNet  Google Scholar 

  13. G. Calvaruso, D. Perrone: Homogeneous and H-contact unit tangent sphere bundles. J. Aust. Math. Soc. 88 (2010), 323–337.

    Article  MathSciNet  Google Scholar 

  14. G. Calvaruso, D. Perrone: Metrics of Kaluza-Klein type on the anti-de Sitter space \(\mathbb{H}_1^3\). Math. Nachr. 287 (2014), 885–902.

    Article  MathSciNet  Google Scholar 

  15. S. Deshmukh: Geometry of conformal vector fields. Arab J. Math. Sci. 23 (2017), 44–73.

    MathSciNet  MATH  Google Scholar 

  16. P. Dombrowski: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1962), 73–88.

    MathSciNet  MATH  Google Scholar 

  17. S. Ewert-Krzemieniewski: On Killing vector fields on a tangent bundle with g-natural metric. I. Note Mat. 34 (2014), 107–133.

    Article  MathSciNet  Google Scholar 

  18. A. Gezer, L. Eilen: On infinitesimal conformal transformations with respect to the Cheeger-Gromoll metric. An. StiinS Univ. “Ovidius” Constanta, Ser. Mat. 20 (2012), 113–128.

    MathSciNet  MATH  Google Scholar 

  19. G. S. Hall: Symmetries and Curvature Structure in General Relativity. World Scientific Lecture Notes in Physics 46, World Scientific, River Edge, 2004.

    Book  Google Scholar 

  20. S. Hedayatian, E. Eidabad: Conformal vector fields on tangent bundle of a Riemannian manifold. Iran. J. Sci. Technol, Trans. A, Sci. 29 (2005), 531–539.

    MathSciNet  MATH  Google Scholar 

  21. I. Kolář, P. W. Michor, J. Slovák: Natural Operations in Differential Geometry. Springer, Berlin, 1993.

    Book  Google Scholar 

  22. T. Konno: Killing vector fields on tangent sphere bundles. Kodai Math. J. 21 (1998), 61–72.

    Article  MathSciNet  Google Scholar 

  23. T. Konno: Infinitesimal isometries on tangent sphere bundles over three-dimensional manifolds. Hiroshima Math. J. 41 (2011), 343–366.

    Article  MathSciNet  Google Scholar 

  24. O. Kowalski, M. Sekizawa: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles — a classification. Bull. Tokyo Gakugei Univ., Sect. IV, Ser. Math. Nat. Sci. 40 (1988), 1–29.

    MathSciNet  MATH  Google Scholar 

  25. E. Peyghan, A. Heydari: Conformal vector fields on tangent bundle of a Riemannian manifold. J. Math. Anal. Appl. 347 (2008), 136–142.

    Article  MathSciNet  Google Scholar 

  26. S. Sasaki: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J., II. Ser. 10 (1958), 338–354.

    Article  MathSciNet  Google Scholar 

  27. S. Sasaki: On the differential geometry of tangent bundles of Riemannian manifolds. II. Tohoku Math. J., II. Ser. 14 (1962), 146–155.

    Article  MathSciNet  Google Scholar 

  28. F. M. ŞimŞir, C. Tezer: Conformal vector fields with respect to the Sasaki metric tensor. J. Geom. 84 (2005), 133–151.

    Article  MathSciNet  Google Scholar 

  29. S. Tanno: Killing vectors and geodesic flow vectors on tangent bundles. J. Reine Angew. Math. 282 (1976), 162–171.

    MathSciNet  MATH  Google Scholar 

  30. C. M. Wood: An existence theorem for harmonic sections. Manuscr. Math. 68 (1990), 69–75.

    Article  MathSciNet  Google Scholar 

  31. K. Yano, S. Kobayashi: Prolongations of tensor fields and connections to tangent bundles. I: General theory. J. Math. Soc. Japan 18 (1966), 194–210.

    Article  MathSciNet  Google Scholar 

  32. K. Yano, S. Kobayashi: Prolongations of tensor fields and connections to tangent bundles. II: Infinitesimal automorphisms. J. Math. Soc. Japan 18 (1966), 236–246.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors are very grateful to the anonymous referee for his valuable comments and suggestions improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Tahar Kadaoui Abbassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbassi, M.T.K., Amri, N. On g-Natural Conformal Vector Fields on Unit Tangent Bundles. Czech Math J 71, 75–109 (2021). https://doi.org/10.21136/CMJ.2020.0193-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2020.0193-19

Keywords

MSC 2020

Navigation