Generalized Symmetry Classes of Tensors


Let V be a unitary space. For an arbitrary subgroup G of the full symmetric group Sm and an arbitrary irreducible unitary representation Λ of G, we study the generalized symmetry class of tensors over V associated with G and Λ. Some important properties of this vector space are investigated.

This is a preview of subscription content, access via your institution.


  1. [1]

    E. Babaei, Y. Zamani: Symmetry classes of polynomials associated with the dihedral group. Bull. Iran. Math. Soc. 40 (2014), 863–874.

    MathSciNet  MATH  Google Scholar 

  2. [2]

    E. Babaei, Y. Zamani: Symmetry classes of polynomials associated with the direct product of permutation groups. Int. J. Group Theory 3 (2014), 63–69.

    MathSciNet  MATH  Google Scholar 

  3. [3]

    E. Babaei, Y. Zamani, M. Shahryari: Symmetry classes of polynomials. Commun. Algebra 44 (2016), 1514–1530.

    MathSciNet  Article  Google Scholar 

  4. [4]

    M. R. Darafsheh, M. R. Pournaki: On the orthogonal basis of the symmetry classes of tensors associated with the dicyclic group. Linear Multilinear Algebra 47 (2000), 137–149.

    MathSciNet  Article  Google Scholar 

  5. [5]

    J. A. Dias da Silva, M. M. Torres: On the orthogonal dimensions of orbital sets. Linear Algebra Appl. 401 (2005), 77–107.

    MathSciNet  Article  Google Scholar 

  6. [6]

    M.-P. Gong: Generalized symmetric tensors and related topics. Linear Algebra Appl. 236 (1996), 113–129.

    MathSciNet  Article  Google Scholar 

  7. [7]

    R. R. Holmes, A. Kodithuwakku: Orthogonal bases of Brauer symmetry classes of tensors for the dihedral group. Linear Multilinear Algebra 61 (2013), 1136–1147.

    MathSciNet  Article  Google Scholar 

  8. [8]

    T.-G. Lei: Generalized Schur functions and generalized decomposable symmetric tensors. Linear Algebra Appl. 263 (1997), 311–332.

    MathSciNet  Article  Google Scholar 

  9. [9]

    M. Marcus: Finite Dimensional Multilinear Algebra. Part I. Pure and Applied Mathematics 23, Marcel Dekker, New York, 1973.

    Google Scholar 

  10. [10]

    R. Merris: Multilinear Algebra. Algebra, Logic and Applications 8, Gordon and Breach, Langhorne, 1997.

    Google Scholar 

  11. [11]

    M. Ranjbari, Y. Zamani: Induced operators on symmetry classes of polynomials. Int. J. Group Theory 6 (2017), 21–35.

    MathSciNet  MATH  Google Scholar 

  12. [12]

    M. Shahryari: On the orthogonal bases of symmetry classes. J. Algebra 220 (1999), 327–332.

    MathSciNet  Article  Google Scholar 

  13. [13]

    M. Shahryari, Y. Zamani: Symmetry classes of tensors associated with Young subgroups. Asian-Eur. J. Math. 4 (2011), 179–185.

    MathSciNet  Article  Google Scholar 

  14. [14]

    Y. Zamani: On the special basis of a certain full symmetry class of tensors. PU.M.A., Pure Math. Appl. 18 (2007), 357–363.

    MathSciNet  MATH  Google Scholar 

  15. [15]

    Y. Zamani, E. Babaei: The dimensions of cyclic symmetry classes of polynomials. J. Algebra Appl. 13 (2014), Article ID 1350085, 10 pages.

  16. [16]

    Y. Zamani, M. Ranjbari: Representations of the general linear group over symmetry classes of polynomials. Czech. Math. J. 68 (2018), 267–276.

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yousef Zamani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rafatneshan, G., Zamani, Y. Generalized Symmetry Classes of Tensors. Czech Math J 70, 921–933 (2020).

Download citation


  • irreducible character
  • generalized Schur function
  • orthogonal basis
  • symmetry class of tensors

MSC 2020

  • 20C30
  • 15A69