Czechoslovak Mathematical Journal

, Volume 68, Issue 1, pp 35–65 | Cite as

Fundamental groupoids of digraphs and graphs

  • Alexander Grigor’yan
  • Rolando Jimenez
  • Yuri Muranov
Article
  • 13 Downloads

Abstract

We introduce the notion of fundamental groupoid of a digraph and prove its basic properties. In particular, we obtain a product theorem and an analogue of the Van Kampen theorem. Considering the category of (undirected) graphs as the full subcategory of digraphs, we transfer the results to the category of graphs. As a corollary we obtain the corresponding results for the fundamental groups of digraphs and graphs. We give an application to graph coloring.

Keywords

digraph fundamental group fundamental groupoid product of graphs 

MSC 2010

05C25 05C38 05C76 20L05 57M15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. H. Atkin: An algebra for patterns on a complex I. Int. J. Man-Mach. Stud. 6 (1974), 285–307. MR doiMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. H. Atkin: An algebra for patterns on a complex II. Int. J. Man-Mach. Stud. 8 (1976), 483–498. MR doiMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Babson, H. Barcelo, M. de Longueville, R. Laubenbacher: Homotopy theory of graphs. J. Algebr. Comb. 24 (2006), 31–44.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    H. Barcelo, X. Kramer, R. Laubenbacher, C. Weaver: Foundations of a connectivity theory for simplicial complexes. Adv. Appl. Math. 26 (2001), 97–128.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    R. Brown: Topology and Groupoids, BookSurge, Charleston, 2006.MATHGoogle Scholar
  6. [6]
    A. Dimakis, F.Müller-Hoissen: Differential calculus and gauge theory on finite sets. J. Phys. A, Math. Gen. 27 (1994), 3159–3178.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Dimakis, F. Müller-Hoissen: Discrete differential calculus: Graphs, topologies, and gauge theory. J. Math. Phys. 35 (1994), 6703–6735.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    A. Grigor’yan, Y. Lin, Y. Muranov, S.-T. Yau: Homotopy theory for digraphs. Pure Appl. Math. Q. 10 (2014), 619–674.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    A. Grigor’yan, Y. Lin, Y. Muranov, S.-T. Yau: Cohomology of digraphs and (undirected) graphs. Asian J. Math. 19 (2015), 887–931.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    A. Grigor’yan, Y. V. Muranov, S.-T. Yau: Graphs associated with simplicial complexes. Homology Homotopy Appl. 16 (2014), 295–311.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Hatcher: Algebraic Topology, Cambridge University Press, Cambridge, 2002.MATHGoogle Scholar
  12. [12]
    P. Hell, J. Nešetřil: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and Its Applications 28, Oxford University Press, Oxford, 2004.Google Scholar
  13. [13]
    E. H. Spanier: Algebraic Topology, Springer, Berlin, 1995.MATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  • Alexander Grigor’yan
    • 1
  • Rolando Jimenez
    • 2
  • Yuri Muranov
    • 3
  1. 1.Mathematics DepartmentUniversity of BielefeldBielefeldGermany
  2. 2.Instituto de MatematicasUNAM Unidad OaxacaOaxacaMexico
  3. 3.Faculty of Mathematics and Computer ScienceUniversity of Warmia and MazuryOlsztynPoland

Personalised recommendations