Czechoslovak Mathematical Journal

, Volume 68, Issue 1, pp 19–34

# When a line graph associated to annihilating-ideal graph of a lattice is planar or projective

• Atossa Parsapour
Article

## Abstract

Let (L,∧, ∨) be a finite lattice with a least element 0. AG(L) is an annihilating-ideal graph of L in which the vertex set is the set of all nontrivial ideals of L, and two distinct vertices I and J are adjacent if and only if IJ = 0. We completely characterize all finite lattices L whose line graph associated to an annihilating-ideal graph, denoted by L(AG(L)), is a planar or projective graph.

## Keywords

annihilating-ideal graph lattice line graph planar graph projective graph

## MSC 2010

05C75 05C10 06B10

## References

1. [1]
M. Afkhami, S. Bahrami, K. Khashyarmanesh, F. Shahsavar: The annihilating-ideal graph of a lattice. Georgian Math. J. 23 (2016), 1–7.
2. [2]
D. F. Anderson, M. C. Axtell, J. A. Stickles: Zero-divisor graphs in commutative rings. Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana et al., eds.). Springer, New York, 2011, pp. 23–45.Google Scholar
3. [3]
D. Archdeacon: A Kuratowski theorem for the projective plane. J. Graph Theory 5 (1981), 243–246.
4. [4]
I. Beck: Coloring of commutative rings. J. Algebra 116 (1988), 208–226.
5. [5]
M. Behboodi, Z. Rakeei: The annihilating-ideal graph of commutative rings I. J. Algebra Appl. 10 (2011), 727–739.
6. [6]
M. Behboodi, Z. Rakeei: The annihilating-ideal graph of commutative rings II. J. Algebra Appl. 10 (2011), 741–753.
7. [7]
J. A. Bondy, U. S. R. Murty: Graph Theory with Applications, American Elsevier Publishing, New York, 1976.
8. [8]
A. Bouchet: Orientable and nonorientable genus of the complete bipartite graph. J. Comb. Theory, Ser. B 24 (1978), 24–33.
9. [9]
H.-J. Chiang-Hsieh, P.-F. Lee, H.-J. Wang: The embedding of line graphs associated to the zero-divisor graphs of commutative rings. Isr. J. Math. 180 (2010), 193–222.
10. [10]
B. A. Davey, H. A. Priestley: Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002.
11. [11]
H. H. Glover, J. P. Huneke, C. S. Wang: 103 graphs that are irreducible for the projective plane. J. Comb. Theory, Ser. B 27 (1979), 332–370.Google Scholar
12. [12]
C. Godsil, G. Royle: Algebraic Graph Theory. Graduate Texts in Mathematics 207, Springer, New York, 2001.Google Scholar
13. [13]
K. Khashyarmanesh, M. R. Khorsandi: Projective total graphs of commutative rings. Rocky Mt. J. Math. 43 (2013), 1207–1213.
14. [14]
W. S. Massey: Algebraic Topology: An Introduction. Graduate Texts in Mathematics 56, Springer, New York, 1977.Google Scholar
15. [15]
J. B. Nation: Notes on Lattice Theory. 1991–2009. Available at http: //www.math. hawaii.edu/~jb/books.html.Google Scholar
16. [16]
G. Ringel: Map Color Theorem. Die Grundlehren der mathematischen Wissenschaften 209, Springer, Berlin, 1974.Google Scholar
17. [17]
J. Roth, W. Myrvold: Simpler projective plane embedding. Ars Comb. 75 (2005), 135–155.
18. [18]
J. Sedláček: Some properties of interchange graphs. Theory Graphs Appl. Proc. Symp. Smolenice, 1963, Czechoslovak Acad. Sci., Praha, 1964, pp. 145–150.Google Scholar
19. [19]
A. T. White: Graphs, Groups and Surfaces. North-Holland Mathematics Studies 8, North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York, 1973.Google Scholar