Local Superderivations on Lie Superalgebra q(n)



Let q(n) be a simple strange Lie superalgebra over the complex field ℂ. In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over ℂ and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but p(n) is an exception. In this paper, we introduce the definition of the local superderivation on q(n), give the structures and properties of the local superderivations of q(n), and prove that every local superderivation on q(n), n > 3, is a superderivation.


simple Lie superalgebra superderivation local superderivation 

MSC 2010

16W55 17B20 17B40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Albeverio, S. A. Ayupov, K. K. Kudaybergenov, B. O. Nurjanov: Local derivations on algebras of measurable operators. Commun. Contemp. Math. 13 (2011), 643–657.Google Scholar
  2. [2]
    R. Alizadeh, M. J. Bitarafan: Local derivations of full matrix rings. Acta Math. Hung. 145 (2015), 433–439.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S. Ayupov, K. Kudaybergenov: Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl. 493 (2016), 381–398.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S. Ayupov, K. Kudaybergenov, B. Nurjanov, A. Alauadinov: Local and 2-local derivations on noncommutative Arens algebras. Math. Slovaca 64 (2014), 423–432.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    V. G. Kac: Lie superalgebras. Adv. Math. 26 (1977), 8–96.CrossRefMATHGoogle Scholar
  6. [6]
    R. V. Kadison: Local derivations. J. Algebra 130 (1990), 494–509.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    F. Mukhamedov, K. Kudaybergenov: Local derivations on subalgebras of τ-measurable operators with respect to semi-finite von Neumann algebras. Mediterr. J. Math. 12 (2015), 1009–1017MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    I. M. Musson: Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics 131, American Mathematical Society, Providence, 2012.MATHGoogle Scholar
  9. [9]
    A. Nowicki, I. Nowosad: Local derivations of subrings of matrix rings. Acta Math. Hung. 105 (2004), 145–150.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    M. Scheunert: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716, Springer, Berlin, 1979.CrossRefMATHGoogle Scholar
  11. [11]
    J.-H. Zhang, G.-X. Ji, H.-X. Cao: Local derivations of nest subalgebras of von Neumann algebras. Linear Algebra Appl. 392 (2004), 61–69.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesDalian University of TechnologyDalian City, Liaoning ProvinceP. R. China

Personalised recommendations