Czechoslovak Mathematical Journal

, Volume 68, Issue 3, pp 661–675 | Cite as

Local Superderivations on Lie Superalgebra \(\mathfrak{q}\) (n)

  • Haixian Chen
  • Ying Wang


Let \(\mathfrak{q}\) (n) be a simple strange Lie superalgebra over the complex field ℂ. In a paper by A.Ayupov, K.Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over ℂ and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but \(\mathfrak{p}\) (n) is an exception. In this paper, we introduce the definition of the local superderivation on \(\mathfrak{q}\) (n), give the structures and properties of the local superderivations of \(\mathfrak{q}\) (n), and prove that every local superderivation on \(\mathfrak{q}\) (n), n > 3, is a superderivation.


simple Lie superalgebra superderivation local superderivation 

MSC 2010

16W55 17B20 17B40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Albeverio, S. A. Ayupov, K. K. Kudaybergenov, B. O. Nurjanov: Local derivations on algebras of measurable operators. Commun. Contemp. Math. 13 (2011), 643–657.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Alizadeh, M. J. Bitarafan: Local derivations of full matrix rings. Acta Math. Hung. 145 (2015), 433–439.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Ayupov, K. Kudaybergenov: Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl. 493 (2016), 381–398.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Ayupov, K. Kudaybergenov, B. Nurjanov, A. Alauadinov: Local and 2-local derivations on noncommutative Arens algebras. Math. Slovaca 64 (2014), 423–432.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    V. G. Kac: Lie superalgebras. Adv. Math. 26 (1977), 8–96.CrossRefzbMATHGoogle Scholar
  6. [6]
    R. V. Kadison: Local derivations. J. Algebra 130 (1990), 494–509.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F. Mukhamedov, K. Kudaybergenov: Local derivations on subalgebras of t-measurable operators with respect to semi-finite von Neumann algebras. Mediterr. J. Math. 12 (2015), 1009–1017.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    I. M. Musson: Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics 131, American Mathematical Society, Providence, 2012.Google Scholar
  9. [9]
    A. Nowicki, I. Nowosad: Local derivations of subrings of matrix rings. Acta Math. Hung. 105 (2004), 145–150.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Scheunert: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716, Springer, Berlin, 1979.Google Scholar
  11. [11]
    J.-H. Zhang, G.-X. Ji, H.-X. Cao: Local derivations of nest subalgebras of von Neumann algebras. Linear Algebra Appl. 392 (2004), 61–69.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesDalian University of TechnologyDalian CityP.R. China

Personalised recommendations