Czechoslovak Mathematical Journal

, Volume 68, Issue 3, pp 611–631 | Cite as

The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains

  • Hyeseon Kim
  • Atsushi Yamamori


We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan’s linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.


holomorphic automorphism group Bergman kernel Reinhardt domain 

MSC 2010

32M05 32A25 32A07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Ahn, J. Byun, J.-D. Park: Automorphisms of the Hartogs type domains over classical symmetric domains. Int. J. Math. 23 (2012), 1250098, 11 pages.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Bi, Z. Feng, Z. Tu: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349–359.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. P. D’Angelo: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23–34.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Engliš, G. Zhang: On a generalized Forelli-Rudin construction. Complex Var. Elliptic Equ. 51 (2006), 277–294.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Z. Huo: The Bergman kernel on some Hartogs domains. J. Geom. Anal. 27 (2017), 271–299.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Ishi, C. Kai: The representative domain of a homogeneous bounded domain. Kyushu J. Math. 64 (2010), 35–47.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Jarnicki, P. Pflug: First Steps in Several Complex Variables: Reinhardt Domains. EMS Textbooks in Mathematics, European Mathematical Society, Zürich, 2008.Google Scholar
  8. [8]
    M. Jarnicki, P. Pflug: Invariant Distances and Metrics in Complex Analysis. De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin, 2013.CrossRefzbMATHGoogle Scholar
  9. [9]
    H. Kim, V. T. Ninh, A. Yamamori: The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), 637–642.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    H. Kim, A. Yamamori: An application of a Diederich-Ohsawa theorem in characterizing some Hartogs domains. Bull. Sci. Math. 139 (2015), 737–749.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H. Kim, A. Yamamori, L. Zhang: Invariant metrics on unbounded strongly pseudoconvex domains with non-compact automorphism group. Ann. Global Anal. Geom. 50 (2016), 261–295.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Kodama: On the holomorphic automorphism group of a generalized complex ellipsoid. Complex Var. Elliptic Equ. 59 (2014), 1342–1349.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    E. Ligocka: On the Forelli-Rudin construction and weighted Bergman projections. Stud. Math. 94 (1989), 257–272.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Loi, M. Zedda: Balanced metrics on Cartan and Cartan-Hartogs domains. Math. Z. 270 (2012), 1077–1087.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Q. Lu: On the representative domain. Several Complex Variables. Proc. 1981 Hangzhou Conf., Birkhäuser, Boston, 1984, pp. 199–211.Google Scholar
  16. [16]
    J. Ning, H. Zhang, X. Zhou: Proper holomorphic mappings between invariant domains in Cn. Trans. Am. Math. Soc. 369 (2017), 517–536.CrossRefzbMATHGoogle Scholar
  17. [17]
    F. Rong: On automorphism groups of generalized Hua domains. Math. Proc. Camb. Philos. Soc. 156 (2014), 461–472.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F. Rong: On automorphisms of quasi-circular domains fixing the origin. Bull. Sci. Math. 140 (2016), 92–98.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Roos: Weighted Bergman kernels and virtual Bergman kernels. Sci. China Ser. A 48 (2005), Suppl., 225–237.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Springer: Pseudo-conformal transformations onto circular domains. Duke Math. J. 18 (1951), 411–424.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    T. Tsuboi: Bergman representative domains and minimal domains. Jap. J. Math. 29 (1959), 141–148.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Z. Tu, L. Wang: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl. 419 (2014), 703–714.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Z. Tu, L. Wang: Rigidity of proper holomorphic mappings between equidimensional Hua domains. Math. Ann. 363 (2015), 1–34.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Yamamori: A remark on the Bergman kernels of the Cartan-Hartogs domains. C. R., Math. Acad. Sci. Paris 350 (2012), 157–160.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Yamamori: The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function. Complex Var. Elliptic Equ. 58 (2013), 783–793.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Yamamori: Automorphisms of normal quasi-circular domains. Bull. Sci. Math. 138 (2014), 406–415.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Yamamori: A generalization of the Forelli-Rudin construction and deflation identities. Proc. Am. Math. Soc. 143 (2015), 1569–1581.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Yamamori: Non-hyperbolic unbounded Reinhardt domains: non-compact automorphism group, Cartan’s linearity theorem and explicit Bergman kernel. Tohoku Math. J. 69 (2017), 239–260.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    W. Yin: The Bergman kernels on Cartan-Hartogs domains. Chin. Sci. Bull. 44 (1999), 1947–1951.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Zedda: Berezin-Engliš’ quantization of Cartan-Hartogs domains. J. Geom. Phys. 100 (2016), 62–67.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    L. Zhang: Bergman kernel function on Hua construction of the second type. Sci. China Ser. A 48 (2005), Suppl., 400–412.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Center for Mathematical ChallengesKorea Institute for Advanced StudySeoulRepublic of Korea
  2. 2.Academic Support CenterKogakuin UniversityHachioji, TokyoJapan

Personalised recommendations