Advertisement

Czechoslovak Mathematical Journal

, Volume 68, Issue 1, pp 227–241 | Cite as

A dispersion inequality in the Hankel setting

  • Saifallah Ghobber
Article

Abstract

The aim of this paper is to prove a quantitative version of Shapiro’s uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.

Keywords

time-frequency concentration windowed Hankel transform Shapiro’s uncertainty principles 

MSC 2010

94A12 42C20 45P05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. C. Bowie: Uncertainty inequalities for Hankel transforms. SIAM J. Math. Anal. 2 (1971), 601–606.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    W. Czaja, G. Gigante: Continuous Gabor transform for strong hypergroups. J. Fourier Anal. Appl. 9 (2003), 321–339.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Ghobber: Phase space localization of orthonormal sequences in L 2 α(R+). J. Approx. Theory 189 (2015), 123–136.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Ghobber, S. Omri: Time-frequency concentration of the windowed Hankel transform. Integral Transforms Spec. Funct. 25 (2014), 481–496.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. Lamouchi, S. Omri: Time-frequency localization for the short time Fourier transform. Integral Transforms Spec. Funct. 27 (2016), 43–54.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    B. M. Levitan: Expansion in Fourier series and integrals with Bessel functions. Uspekhi Matem. Nauk (N. S.) 6 (1951), 102–143. (In Russian.)MathSciNetGoogle Scholar
  7. [7]
    E. Malinnikova: Orthonormal sequences in L 2(Rd) and time frequency localization. J. Fourier Anal. Appl. 16 (2010), 983–1006.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. S. Shapiro: Uncertainty principles for basis in L 2(R), Proc. of the Conf. on Harmonic Analysis and Number Theory, Marseille-Luminy, 2005. CIRM.Google Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Department of Mathematics, College of Education in MajmaahMajmaah UniversityMajmaahKingdom of Saudi Arabia
  2. 2.LR11ES11 Analyse Mathématiques et Applications, Faculté des Sciences de TunisUniversité de Tunis El Manar, Campus Universitaire Farhat HachedTunisTunisie

Personalised recommendations