Czechoslovak Mathematical Journal

, Volume 68, Issue 1, pp 141–148 | Cite as

Group algebras whose groups of normalized units have exponent 4



We give a full description of locally finite 2-groups G such that the normalized group of units of the group algebra FG over a field F of characteristic 2 has exponent 4.


group of exponent 4 unit group modular group algebra 

MSC 2010

16S34 16U60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. A. Bovdi: Group Rings. University publishers, Uzgorod, 1974. (In Russian.)MATHGoogle Scholar
  2. [2]
    A. Bovdi: The group of units of a group algebra of characteristic p. Publ. Math. 52 (1998), 193–244.MathSciNetMATHGoogle Scholar
  3. [3]
    V. Bovdi: Group algebras whose group of units is powerful. J. Aust. Math. Soc. 87 (2009), 325–328.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    V. Bovdi, M. Dokuchaev: Group algebras whose involutory units commute. Algebra Colloq. 9 (2002), 49–64.MathSciNetMATHGoogle Scholar
  5. [5]
    V. Bovdi, A. Konovalov, R. Rossmanith, C. Schneider: LAGUNA Lie AlGebras and UNits of group Algebras. Version 3.5.0, 2009, http: // Scholar
  6. [6]
    A. Bovdi, P. Lakatos: On the exponent of the group of normalized units of modular group algebras. Publ. Math. 42 (1993), 409–415.MathSciNetMATHGoogle Scholar
  7. [7]
    A. Caranti: Finite p-groups of exponent p 2 in which each element commutes with its endomorphic images. J. Algebra 97 (1985), 1–13.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    GAP: The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.4.12, Scholar
  9. [9]
    N. D. Gupta, M. F. Newman: The nilpotency class of finitely generated groups of exponent four, Proc. 2nd Int. Conf. Theory of Groups, Canberra, 1973, Lect. Notes Math. 372, Springer, Berlin. 1974, pp. 330–332.MATHGoogle Scholar
  10. [10]
    M. Hall, Jr.: The Theory of Groups, The Macmillan Company, New York, 1959.MATHGoogle Scholar
  11. [11]
    Z. Janko: On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4. J. Algebra 315 (2007), 801–808.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Z. Janko: Finite nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4. J. Algebra 321 (2009), 2890–2897.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Z. Janko: Finite p-groups of exponent p e all of whose cyclic subgroups of order p e are normal. J. Algebra 416 (2014), 274–286.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    M. Quick: Varieties of groups of exponent 4. J. Lond. Math. Soc., II. Ser. 60 (1999), 747–756.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Shalev: Dimension subgroups, nilpotency indices, and the number of generators of ideals in p-group algebras. J. Algebra 129 (1990), 412–438.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    A. Shalev: Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units. J. Lond. Math. Soc., II. Ser. 43 (1991), 23–36.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    M. R. Vaughan-Lee, J. Wiegold: Countable locally nilpotent groups of finite exponent without maximal subgroups. Bull. Lond. Math. Soc. 13 (1981), 45–46.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates

Personalised recommendations