Essential norm and a new characterization of weighted composition operators from weighted bergman spaces and hardy spaces into the Bloch space

Article
  • 7 Downloads

Abstract

In this paper, we give some estimates for the essential norm and a new characterization for the boundedness and compactness of weighted composition operators from weighted Bergman spaces and Hardy spaces to the Bloch space.

Keywords

Bloch space weighted Bergman space Hardy space essential norm weighted composition operator 

MSC 2010

30H30 47B38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. E. Castillo, J. C. Ramos-Fernández, E. M. Rojas: A new essential norm estimate of composition operators from weighted Bloch space into µ-Bloch spaces. J. Funct. Spaces Appl. 2013 (2013), Article ID 817278, 5 pages.Google Scholar
  2. [2]
    F. Colonna: New criteria for boundedness and compactness of weighted composition operators mapping into the Bloch space. Cent. Eur. J. Math. 11 (2013), 55–73.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    C. C. Cowen, B. D. MacCluer: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995.Google Scholar
  4. [4]
    K. Esmaeili, M. Lindström: Weighted composition operators between Zygmund type spaces and their essential norms. Integral Equations Oper. Theory 75 (2013), 473–490.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    O. Hyvärinen, M. Kemppainen, M. Lindström, A. Rautio, E. Saukko: The essential norm of weighted composition operators on weighted Banach spaces of analytic functions. Integral Equations Oper. Theory 72 (2012), 151–157.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    O. Hyvärinen, M. Lindström: Estimates of essential norms of weighted composition operators between Bloch-type spaces. J. Math. Anal. Appl. 393 (2012), 38–44.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. Li, S. Stević: Weighted composition operators from Bergman-type spaces into Bloch spaces. Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 371–385.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    S. Li, S. Stević: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 338 (2008), 1282–1295.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. Li, S. Stević: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 206 (2008), 825–831.MathSciNetMATHGoogle Scholar
  10. [10]
    Y.-X. Liang, Z.-H. Zhou: Essential norm of the product of differentiation and composition operators between Bloch-type spaces. Arch. Math. 100 (2013), 347–360.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Z. Lou: Composition operators on Bloch type spaces. Analysis Münich 23 (2003), 81–95.MathSciNetMATHGoogle Scholar
  12. [12]
    B. D. MacCluer, R. Zhao: Essential norms of weighted composition operators between Bloch-type spaces. Rocky Mountain J. Math. 33 (2003), 1437–1458.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    K. Madigan, A. Matheson: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347 (1995), 2679–2687.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    J. S. Manhas, R. Zhao: New estimates of essential norms of weighted composition operators between Bloch type spaces. J. Math. Anal. Appl. 389 (2012), 32–47.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Montes-Rodríguez: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc., II. Ser. 61 (2000), 872–884.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. Ohno, K. Stroethoff, R. Zhao: Weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 33 (2003), 191–215.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    S. Stević: Weighted differentiation composition operators from H and Bloch spaces to nth weighted-type spaces on the unit disk. Appl. Math. Comput. 216 (2010), 3634–3641.MathSciNetMATHGoogle Scholar
  18. [18]
    S. Stević: Characterizations of composition followed by differentiation between Bloch-type spaces. Appl. Math. Comput. 218 (2011), 4312–4316.MathSciNetMATHGoogle Scholar
  19. [19]
    M. Tjani: Compact Composition Operators on Some Möbius Invariant Banach Spaces. PhD Thesis, Michigan State University, Michigan, 1996.MATHGoogle Scholar
  20. [20]
    M. Tjani: Compact composition operators on Besov spaces. Trans. Am. Math. Soc. 355 (2003), 4683–4698.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    H. Wulan, D. Zheng, K. Zhu: Compact composition operators on BMOA and the Bloch space. Proc. Am. Math. Soc. 137 (2009), 3861–3868.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    C. Xiong: Norm of composition operators on the Bloch space. Bull. Aust. Math. Soc. 70 (2004), 293–299.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    W. Yang: Generalized weighted composition operators from the F(p, q, s) space to the Bloch-type space. Appl. Math. Comput. 218 (2012), 4967–4972.MathSciNetMATHGoogle Scholar
  24. [24]
    W. Yang, X. Zhu: Generalized weighted composition operators from area Nevanlinna spaces to Bloch-type spaces. Taiwanese J. Math. 16 (2012), 869–883.MathSciNetMATHGoogle Scholar
  25. [25]
    R. Zhao: Essential norms of composition operators between Bloch type spaces. Proc. Am. Math. Soc. 138 (2010), 2537–2546.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    K. Zhu: Operator Theory in Function Spaces. Pure and Applied Mathematics 139, Marcel Dekker, New York, 1990.MATHGoogle Scholar
  27. [27]
    X. Zhu: Generalized weighted composition operators on Bloch-type spaces. J. Inequal. Appl. (electronic only) 2015 (2015), Paper No. 59, 9 pages.Google Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017

Authors and Affiliations

  1. 1.Department of MathematicsJiaying UniversityMeijiang, Meizhou, GuangdongP.R. China
  2. 2.School of Mathematics and Computation ScienceLingnan Normal UniversityChikan, Zhenjiang, GuangdongP.R. China
  3. 3.School of SciencesAnhui University of Science and TechnologyTianjia’an, Huainan, AnhuiP.R. China

Personalised recommendations