Czechoslovak Mathematical Journal

, Volume 68, Issue 1, pp 257–266 | Cite as

A characterization of reflexive spaces of operators

  • Janko Bračič
  • Lina Oliveira


We show that for a linear space of operators MB(H1, H2) the following assertions are equivalent. (i) M is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map Ψ = (ψ1, ψ2) on a bilattice Bil(M) of subspaces determined by M with P ≤ ψ1(P,Q) and Q ≤ ψ2(P,Q) for any pair (P,Q) ∈ Bil(M), and such that an operator TB(H1, H2) lies in M if and only if ψ2(P,Q)Tψ1(P,Q) = 0 for all (P,Q) ∈ Bil(M). This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.


reflexive space of operators order-preserving map 

MSC 2010



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. G. Han: On A-submodules for reflexive operator algebras. Proc. Am. Math. Soc. 104 (1988), 1067–1070.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. A. Erdos: Reflexivity for subspace maps and linear spaces of operators. Proc. Lond. Math. Soc., III Ser. 52 (1986), 582–600.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. A. Erdos, S. C. Power: Weakly closed ideals of nest algebras. J. Oper. Theory 7 (1982), 219–235.MathSciNetzbMATHGoogle Scholar
  4. [4]
    D. Hadwin: A general view of reflexivity. Trans. Am. Math. Soc. 344 (1994), 325–360.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    P. R. Halmos: Reflexive lattices of subspaces. J. Lond. Math. Soc., II. Ser. 4 (1971), 257–263.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    K. Kliś-Garlicka: Reflexivity of bilattices. Czech. Math. J. 63 (2013), 995–1000.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    K. Kliś-Garlicka: Hyperreflexivity of bilattices. Czech. Math. J. 66 (2016), 119–125.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Li, F. Li: Jordan modules and Jordan ideals of reflexive algebras. Integral Equations Oper. Theory 74 (2012), 123–136.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. I. Loginov, V. S. Sul’man: Hereditary and intermediate reflexivity of W*-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260–1273). (In Russian.)MathSciNetzbMATHGoogle Scholar
  10. [10]
    V. Shulman, L. Turowska: Operator synthesis I. Synthetic sets, bilattices and tensor algebras. J. Funct. Anal. 209 (2004), 293–331.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017

Authors and Affiliations

  1. 1.Naravoslovnotehniška FakultetaUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Center for Mathematical Analysis, Geometry and Dynamical Systems, and Department of Mathematics, Instituto Superior TécnicoUniversidade de Lisboa, Av. Rovisco PaisLisboaPortugal

Personalised recommendations