Czechoslovak Mathematical Journal

, Volume 68, Issue 1, pp 169–193 | Cite as

A higher rank Selberg sieve and applications

  • Akshaa Vatwani


We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.


Selberg sieve bounded gaps prime k-tuples 

MSC 2010

11N05 11N35 11N36 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Friedlander, H. Iwaniec: Opera de Cribro. Colloquium Publications, American Mathematical Society 57, Providence, 2010.Google Scholar
  2. [2]
    H. Halberstam, H.-E. Richert: Sieve Methods. London Mathematical Society Monographs 4, Academic Press, London, 1974.Google Scholar
  3. [3]
    C. Hooley: On Artin’s conjecture. J. Reine Angew. Math. 225 (1967), 209–220.MathSciNetzbMATHGoogle Scholar
  4. [4]
    J. C. Lagarias, A. M. Odlyzko: Effective versions of the Chebotarev density theorem. Algebraic Number Fields: L-Functions and Galois Properties. Proc. Sympos., Univ. Durham, Durham, 1975, Academic Press, London, 1977, pp. 409–464.Google Scholar
  5. [5]
    J. Maynard: Small gaps between primes. Ann. Math. (2) 181 (2015), 383–413.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. R. Murty: Artin’s Conjecture and Non-abelian Sieves. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1980.Google Scholar
  7. [7]
    M. R. Murty, V. K. Murty: A variant of the Bombieri-Vinogradov theorem. Number Theory. Proc. Conf., Montreal, 1985, CMS Conf. Proc. 7, 1987, pp. 243–272.Google Scholar
  8. [8]
    P. Pollack: Bounded gaps between primes with a given primitive root. Algebra Number Theory 8 (2014), 1769–1786.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D. H. J. Polymath: Variants of the Selberg sieve, and bounded intervals containing many primes. Res. Math. Sci. (electronic only) 1 (2014), Paper No. 12, 83 pages; erratum ibid. (electronic only) 2 (2015), Paper No. 15, 2 pages.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Selberg: Sieve methods. 1969 Number Theory Institute. Proc. Sympos. Pure Math. 20, Stony Brook, 1969, Amer. Mat. Soc., Providence, 1971, pp. 311–351.Google Scholar
  11. [11]
    A. Selberg: Collected Papers. Volume II. Springer, Berlin, 1991.Google Scholar
  12. [12]
    J. Thorner: Bounded gaps between primes in Chebotarev sets. Res. Math. Sci. (electronic only) 1 (2014), Paper No. 4, 16 pages.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Vatwani: Bounded gaps between Gaussian primes. J. Number Theory 171 (2017), 449–473.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Y. Zhang: Bounded gaps between primes. Ann. Math. (2) 179 (2014), 1121–1174.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingston, OntarioCanada

Personalised recommendations