Czechoslovak Mathematical Journal

, Volume 67, Issue 2, pp 551–555

On critical values of twisted Artin L-functions



We give a simple proof that critical values of any Artin L-function attached to a representation ϱ with character χϱ are stable under twisting by a totally even character χ, up to the dim ϱ-th power of the Gauss sum related to χ and an element in the field generated by the values of χϱ and χ over ℚ. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.


Artin L-function character Galois Gauss sum special value 

MSC 2010

11F67 11F80 11L05 11M06 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Coates, S. Lichtenbaum: On l-adic zeta functions. Ann. Math. (2) 98 (1973), 498–550.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    H. Klingen: Über die Werte der Dedekindschen Zetafunktion. Math. Ann. 145 (1962), 265–272. (In German.)MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J. Martinet: Character theory and Artin L-functions. Algebraic Number Fields. Proc. Symp. London math. Soc., Univ. Durham 1975, Academic Press, London, 1977, pp. 1–87.Google Scholar
  4. [4]
    J. Neukirch: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin, 1999.Google Scholar
  5. [5]
    C. L. Siegel: Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 3 (1970), 15–56. (In German.)MATHGoogle Scholar
  6. [6]
    K. Ward: Values of twisted Artin L-functions. Arch. Math. 103 (2014), 285–290.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsQueen’s University, Jeffery HallKingstonCanada

Personalised recommendations