Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces



Let θ ∈ (0, 1), λ ∈ [0, 1) and p, p0, p1 ∈ (1,∞] be such that (1 − θ)/p0 + θ/p1 = 1/p, and let φ, φ0, φ1 be some admissible functions such that φ, φ0p/p0 and φ1p/p1 are equivalent. We first prove that, via the ± interpolation method, the interpolation Lφ0p0),λ (X), Lφ1p1), λ (X), θ> of two generalized grand Morrey spaces on a quasi-metric measure space X is the generalized grand Morrey space Lφp),λ (X). Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.


grand Lebesgue space grand Morrey space Gagliardo-Peetre method quasimetric measure space Calderón product predual space ± interpolation method 

MSC 2010

46B70 46B10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. R. Adams, J. Xiao: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53 (2004), 1629–1663.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    D. R. Adams, J. Xiao: Morrey spaces in harmonic analysis. Ark.Mat. 50 (2012), 201–230.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    G. Anatriello: Iterated grand and small Lebesgue spaces. Collect. Math. 65 (2014), 273–284.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    O. Blasco, A. Ruiz, L. Vega: Non interpolation in Morrey-Campanato and block spaces. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31–40.MathSciNetMATHGoogle Scholar
  5. [5]
    S. Campanato, M. K.V. Murthy: Una generalizzazione del teorema di Riesz-Thorin. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 19 (1965), 87–100. (In Italian.)MathSciNetMATHGoogle Scholar
  6. [6]
    C. Capone, M. R. Formica, R. Giova: Grand Lebesgue spaces with respect to measurable functions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 85 (2013), 125–131.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Fiorenza: Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51 (2000), 131–148.MathSciNetMATHGoogle Scholar
  8. [8]
    A. Fiorenza, B. Gupta, P. Jain: The maximal theorem for weighted grand Lebesgue spaces. Stud. Math. 188 (2008), 123–133.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    A. Fiorenza, G. E. Karadzhov: Grand and small Lebesgue spaces and their analogs. Z. Anal. Anwend. 23 (2004), 657–681.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    A. Fiorenza, M. Krbec: On the domain and range of the maximal operator. Nagoya Math. J. 158 (2000), 43–61.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Fiorenza, A. Mercaldo, J. M. Rakotoson: Regularity and comparison results in grand Sobolev spaces for parabolic equations with measure data. Appl. Math. Lett. 14 (2001), 979–981.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. Fiorenza, A. Mercaldo, J. M. Rakotoson: Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete Contin. Dyn. Syst. 8 (2002), 893–906.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A. Fiorenza, C. Sbordone: Existence and uniqueness results for solutions of nonlinear equations with right hand side in L 1. Stud. Math. 127 (1998), 223–231.MathSciNetMATHGoogle Scholar
  14. [14]
    T. Futamura, Y. Mizuta, T. Ohno: Sobolev’s theorem for Riesz potentials of functions in grand Morrey spaces of variable exponent. Proc. 4th Int. Symposium on Banach and Function Spaces, Kitakyushu, 2012 (M. Kato et al., eds.). Yokohama Publishers, Yokohama, 2014, pp. 353–365.Google Scholar
  15. [15]
    L. Greco, T. Iwaniec, C. Sbordone: Inverting the p-harmonic operator. Manuscr. Math. 92 (1997), 249–258.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J. Gustavsson: On interpolation of weighted L p-spaces and Ovchinnikov’s theorem. Stud. Math. 72 (1982), 237–251.MathSciNetMATHGoogle Scholar
  17. [17]
    J. Gustavsson, J. Peetre: Interpolation of Orlicz spaces. Stud. Math. 60 (1977), 33–59.MathSciNetMATHGoogle Scholar
  18. [18]
    T. Iwaniec, C. Sbordone: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119 (1992), 129–143.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    T. Iwaniec, C. Sbordone: Riesz transforms and elliptic PDEs with VMO coefficients. J. Anal. Math. 74 (1998), 183–212.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    V. Kokilashvili, A. Meskhi, H. Rafeiro: Boundedness of commutators of singular and potential operators in generalized grand Morrey spaces and some applications. Stud. Math. 217 (2013), 159–178.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    V. Kokilashvili, A. Meskhi, H. Rafeiro: Riesz type potential operators in generalized grand Morrey spaces. Georgian Math. J. 20 (2013), 43–64.MathSciNetMATHGoogle Scholar
  22. [22]
    V. Kokilashvili, A. Meskhi, H. Rafeiro: Estimates for nondivergence elliptic equations with VMO coefficients in generalized grand Morrey spaces. Complex Var. Elliptic Equ. 59 (2014), 1169–1184.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    P. G. Lemarié-Rieusset: Multipliers and Morrey spaces. Potential Anal. 38 (2013), 741–752; erratum ibid. 41 (2014), 1359–1362.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Y. Lu, D. Yang, W. Yuan: Interpolation of Morrey spaces on metric measure spaces. Can. Math. Bull. 57 (2014), 598–608.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    A. Meskhi: Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces. Proc. A. Razmadze Math. Inst. 151 (2009), 139–143.MathSciNetMATHGoogle Scholar
  26. [26]
    A. Meskhi: Maximal functions, potentials and singular integrals in grand Morrey spaces. Complex Var. Elliptic Equ. 56 (2011), 1003–1019.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Y. Mizuta, T. Ohno: Trudinger’s exponential integrability for Riesz potentials of functions in generalized grand Morrey spaces. J. Math. Anal. Appl. 420 (2014), 268–278.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126–166.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    P. Nilsson: Interpolation of Banach lattices. Stud. Math. 82 (1985), 135–154.MathSciNetMATHGoogle Scholar
  30. [30]
    T. Ohno, T. Shimomura: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czech. Math. J. 64 (2014), 209–228.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    J. Peetre: On the theory of ℒp,λ spaces. J. Funct. Anal. 4 (1969), 71–87.CrossRefGoogle Scholar
  32. [32]
    J. Peetre: Sur l’utilisation des suites inconditionellement sommables dans la théorie des espaces d’interpolation. Rend. Sem. Mat. Univ. Padova 46 (1971), 173–190. (In French.)MathSciNetGoogle Scholar
  33. [33]
    A. Ruiz, L. Vega: Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation of Morrey spaces. Publ. Mat., Barc. 39 (1995), 405–411.CrossRefMATHGoogle Scholar
  34. [34]
    Y. Sawano, H. Tanaka: Morrey spaces for non-doubling measures. ActaMath. Sin., Engl. Ser. 21 (2005), 1535–1544.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    Y. Sawano, H. Tanaka: Predual spaces of Morrey spaces with non-doubling measures. Tokyo J. Math. 32 (2009), 471–486.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    C. Sbordone: Grand Sobolev spaces and their applications to variational problems. Matematiche 51 (1996), 335–347.MathSciNetMATHGoogle Scholar
  37. [37]
    G. Stampacchia: ℒ(p,λ)-spaces and interpolation. Commun. Pure Appl. Math. 17 (1964), 293–306.CrossRefGoogle Scholar
  38. [38]
    X. Ye: Boundedness of commutators of singular and potential operators in grand Morrey spaces. Acta Math. Sin., Chin. Ser. 54 (2011), 343–352. (In Chinese.)MathSciNetMATHGoogle Scholar
  39. [39]
    W. Yuan, W. Sickel, D. Yang: Interpolation of Morrey-Campanato and related smoothness spaces. Sci. China, Math. 58 (2015), 1835–1908.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    C. T. Zorko: Morrey space. Proc. Am. Math. Soc. 98 (1986), 586–592.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of EducationBeijing, HaidianPeople’s Republic of China

Personalised recommendations